The University of Florida Diving Science and Safety Program STANDARDS FOR SCIENTIFIC DIVING # **CONTENTS** | Volume 1 Section 1.00 GENERAL POLICY | | |---|-------------| | 1.10 Scientific Diving Standards | 6 | | 1.20 Operational Control | 7 | | 1.30 Consequence of Violation of Regulations by Scientific Divers | 11 | | 1.40 Consequences of Violation of Regulations by Organizational Members | 11 | | 1.50 Record Maintenance | 11 | | 1.60 Bloodeborne Pathogens and Diving | 11 | | Section 2.00 DIVING REGULATIONS FOR SCUBA (OPEN CIRCUIT, COMPRESS | SED AIR) 12 | | 2.10 Introduction | 12 | | 2.20 Pre-Dive Procedures | 12 | | 2.30 Diving Procedures | 13 | | 2.40 Post-Dive Procedures | 13 | | 2.50 Emergency Procedures | 13 | | 2.60 Flying After Diving | 14 | | 2.70 Record Keeping Requirements | 14 | | Section 3.00 DIVING EQUIPMENT | 16 | | 3.10 General Policy | 16 | | 3.20 Equipment | 16 | | 3.30 Auxiliary Equipment | 17 | | 3.40 Support Equipment | 17 | | 3.50 Equipment Maintenance | 18 | | 3.60 Air Quality Standards | 18 | | Section 4.00 ENTRY-LEVEL TRAINING REQUIREMENTS | 19 | | 4.10 Evaluation | 19 | | 4.20 Scuba Training | 19 | | Section 5.00 SCIENTIFIC DIVER CERTIFICATION | 21 | | 5.10 Certification Types | 21 | | 5.20 General Policy | 21 | | 5.30 Requirements For Scientific Diver Certification | 21 | | 5.40 Depth Certifications | 24 | | Diving on air is not permitted beyond a depth of 190 feet | 24 | | 5.50 Continuation of Certificate | 25 | | 5.60 Revocation of Certification | 25 | | 5.70 Recertification | 25 | |---|----| | Section 6.00 MEDICAL STANDARDS | 26 | | 6.10 Medical Requirements | 26 | | Volume 2 | | | Section 7.00 NITROX DIVING GUIDELINES | | | 7.10 Prerequisites | | | 7.20 Requirements for Authorization to Use Nitrox | | | 7.30 Nitrox Training Guidelines | | | 7.40 Scientific Nitrox Diving Regulations | | | 7.50 Nitrox Diving Equipment | | | Section 8.00 AQUARIUM DIVING OPERATIONS | | | Section 9.00 STAGED DECOMPRESSION DIVINGsection 10.00 MIXED GAS DIVING | | | Section 11.00 OTHER DIVING TECHNOLOGY | 40 | | 11.10 Blue Water Diving (Currently UF does not conduct this mode of diving) | 40 | | 11.20 Ice And Polar Diving (Currently UF does not conduct this mode of diving) | 40 | | 11.30 Overhead Environments | 40 | | 11.40 Saturation Diving (Currently UF does not conduct this mode of diving) | 40 | | 11.50 Hookah (Currently UF does not conduct this mode of diving) | 40 | | 11.60 Surface Supplied Diving (Currently UF does not conduct this mode of diving) | 40 | | Section 12.0 Rebreathers | 41 | | 12.10 Definitions and General Information | 41 | | 12.20 Prerequisites | 42 | | 12.30 Equipment Requirements | 46 | | 12.40 Operational Requirements | 48 | | 12.50 Oxygen Rebreathers | 51 | | 12.60 Semi-Closed Circuit Rebreathers | 51 | | 12.70 Closed-Circuit Rebreathers | 51 | | SECTION 13.00 SCIENTIFIC CAVE AND Cavern DIVING STANDARD | 52 | | 13.10 Definitions | 52 | | 13.20 Cave and Cavern Environment Hazards | 54 | | 13.30 Minimum Experience and Training Requirements | 54 | | 13.40 Equipment Requirements | | | 13.50 Operational Requirements and Safety Protocols | 57 | | Appendices | | | APPENDIX 1 DIVING MEDICAL EXAM OVERVIEW FOR THE EXAMINING PHYSICIA | N | |---|------------| | | 59 | | APPENDIX 2 MEDICAL EVALUATION OF FITNESS FOR SCUBA DIVING REPORT | | | APPENDIX 3 DIVING MEDICAL HISTORY FORM | 61 | | APPENDIX 4 RECOMMENDED PHYSICIANS WITH EXPERTISE IN DIVING MEDICINI | E 63 | | APPENDIX 5 DEFINITION OF TERMS | 68 | | APPENDIX 6 AAUS REQUEST FOR DIVING RECIPROCITY FORM VERIFICATION OF | 7 | | DIVER TRAINING AND EXPERIENCE | 71 | | APPENDIX 7 DIVING EMERGENCY MANAGEMENT PROCEDURES | 71 | | APPENDIX 8 DIVE COMPUTER GUIDELINES | 7 3 | | APPENDIX 9 AAUS STATISTICS COLLECTION CRITERIA AND DEFINITIONS | 7 4 | # Volume 1 Sections 1.00 through 6.00 #### **SECTION 1.00 GENERAL POLICY** #### 1.10 Scientific Diving Standards The University of Florida supports a large number of programs which involve scientific diving operations. A partial list of the campus organizations that have engaged in some form of scientific diving includes: the Botany Department, the Florida Museum of Natural History, the Department of Coastal and Civil Engineering, the Florida Sea Grant Extension Program, the Department of Zoology, the Department of Fisheries and Aquatic Sciences, the Whitney Marine Research Laboratory and the University Marine Laboratory at Cedar Key. Accordingly, in 1987 the University of Florida adopted standards set forth by the American Academy of Underwater Sciences' "Scientific Diving Standards for Scientific Diving Certification and Operation of Scientific Diving Programs". The goal was to establish a scientific diving safety program that is 1) legally defensible, 2) protects all scientific divers and 3) protects the State of Florida, the University of Florida, its faculty, staff and students. # Purpose The purpose of these Scientific Diving Standards is to ensure that all scientific diving under the auspices of the University of Florida is conducted in a manner that will maximize protection of scientific divers from accidental and occupational injury and/or illness, and to set forth standards for training and certification that will allow a working reciprocity between organizational members. Fulfillment of the purposes shall be consistent with the furtherance of research and safety. This standard sets minimal standards for the establishment of the American Academy of Underwater Sciences (AAUS) recognized scientific diving programs, the organization for the conduct of these programs, and the basic regulations and procedures for safety in scientific diving operations. It also establishes a framework for reciprocity between AAUS organizational members that adhere to these minimum standards. This standard was developed and written by AAUS by compiling the policies set forth in the diving manuals of several university, private, and governmental scientific diving programs. These programs share a common heritage with the scientific diving program at the Scripps Institution of Oceanography (SIO). Adherence to the SIO standards has proven both feasible and effective in protecting the health and safety of scientific divers since 1954. In 1982, OSHA exempted scientific diving from commercial diving regulations (29CFR1910, Subpart T) under certain conditions that are outlined below. The final guidelines for the exemption became effective in 1985 (Federal Register, Vol. 50, No.6, p.1046). AAUS is recognized by OSHA as the scientific diving standard setting organization. #### Scientific Diving Definition Scientific diving is defined (29CFR1910.402) as diving performed solely as a necessary part of a scientific, research, or educational activity by employees whose sole purpose for diving is to perform scientific research tasks. # Scientific Diving Exemption OSHA has granted an exemption for scientific diving from commercial diving regulations under the following guidelines (Appendix B to 29CFR1910 Subpart T): a) The Diving Control Board consists of a majority of active scientific divers and has - autonomous and absolute authority over the scientific diving program's operation. - b) The purpose of the project using scientific diving is the advancement of science; therefore, information and data resulting from the project are non-proprietary. - c) The tasks of a scientific diver are those of an observer and data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial diving are not included within scientific diving. - d) Scientific divers, based on the nature of their activities, must use scientific expertise in studying the underwater environment and therefore, are scientists or scientists-in-training. - e) In addition, the scientific diving program shall contain at least the following elements (29CFR1910.401): - 1. Diving safety manual which includes at a minimum: Procedures covering all diving operations specific to the program; including procedures for emergency care, recompression and evacuation, and the criteria for diver training and certification. - 2. Diving control (safety) board, with the majority of its members being active scientific divers, which shall at a minimum have the authority to: approve and monitor diving projects, review and revise the diving safety manual, assure compliance with the manual, certify the depths to which a diver has been trained, take disciplinary action for unsafe practices, and assure adherence to the buddy system (a diver is accompanied by and is in continuous contact with another diver in the water) for scuba diving. #### Review of Standards An annual report and review of diving activities shall be prepared by the Diving Safety Officer and submitted to the University of Florida Diving Control Board. As part of our annual report, any recommendations for modifications of these standards shall be submitted to the AAUS for consideration. # 1.20 Operational Control Scientific Diving Under the Auspices of the University of Florida Defined For the purposes of these standards the auspices of the University of Florida includes any scientific diving operation in which the University of Florida is connected because of ownership of any equipment used, locations selected, or relationship with the individual(s) concerned. This includes all cases involving the operations of employees of the University of Florida or employees of auxiliary organizations, where such employees are acting within the scope of their employment, and the operations of other persons who are engaged in scientific diving of the University of Florida or are diving as members of an organization recognized by the University of Florida. It is the University of Florida's
responsibility to adhere to the AAUS Standards for Scientific Diving Certification and Operation of Scientific Diving Programs. The administration of the local diving program will reside with the University of Florida's Diving Safety Board (DSB). The regulations herein shall be observed at all locations where scientific diving is conducted. # University of Florida's Scientific Diving Standards and Safety Manual Each organizational member shall develop and maintain a scientific diving safety manual that provides for the development and implementation of policies and procedures that will enable each organizational member to meet requirements of local environments and conditions as well as to comply with the AAUS scientific diving standards. The organizational member's scientific diving manual shall include, but not be limited to: - a) AAUS standards may be used as a set of minimal guidelines for the development of an organizational member's scientific diving safety manual. Volume 1, Sections 1.00 through 6.00 and the Appendices are required for all manuals. Volume 2, Sections 7.00 through 9.00 are required only when the organizational member conducts that diving activity. Organizational member specific sections are placed in Volume 2. - b) Emergency evacuation and medical treatment procedures. - c) Criteria for diver training and certification. - d) Standards written or adopted by reference for each diving mode utilized which include the following: - 1. Safety procedures for the diving operation. - 2. Responsibilities of the dive team members. - 3. Equipment use and maintenance procedures. - 4. Emergency procedures. # **Diving Safety Officer** The Diving Safety Officer (DSO) serves as a member of the Diving Control Board (DCB). This person should have broad technical and scientific expertise in research related diving. #### a) Oualifications - 1. Shall be appointed by the responsible administrative officer or designee, with the advice and counsel of the Diving Safety Board. - 2. Shall be trained as a scientific diver. - 3. Shall be a full member as defined by AAUS. - 4. Shall be an active underwater instructor from a internationally recognized certifying agency. #### b) Duties and Responsibilities - 1. Shall be responsible, through the DSB, to the responsible administrative officer or designee, for the conduct of the scientific diving program of the University of Florida. The routine operational authority for this program, including the conduct of training and certification, approval of dive plans, maintenance of diving records, and ensuring compliance with this standard and all relevant regulations of the University of Florida, rests with the Diving Safety Officer. - 2. May permit portions of this program to be carried out by a qualified delegate, although the Diving Safety Officer may not delegate responsibility for the safe conduct of the local diving program. - 3. Shall be guided in the performance of the required duties by the advice of the DSB, but operational responsibility for the conduct of the local diving program will be retained by the Diving Safety Officer. - 4. Shall suspend diving operations considered to be unsafe or unwise. # **Diving Control Board** - a) The Diving Safety Board (DSB) shall consist of a majority of active scientific divers. Voting members shall include the Diving Safety Officer, the responsible administrative officer, or designee, and should include other representatives of the diving program such as qualified divers and members selected by procedures established by the University of Florida. A chairperson and a secretary may be chosen from the membership of the board according to local procedure. - b) Has autonomous and absolute authority over the scientific diving program's operation. - c) Shall approve and monitor diving projects. - d) Shall review and revise the diving safety manual. - e) Shall assure compliance with the diving safety manual. - f) Shall certify the depths to which a diver has been trained. - g) Shall take disciplinary action for unsafe practices. - h) Shall assure adherence to the buddy system for scuba diving. - i) Shall be responsible to the Provost or his/her designee, and shall act as the official representative of the University of Florida in matters concerning the scientific diving program. - j) Shall act as a board of appeal to consider diver-related problems. - k) Shall recommend the issue, reissue, or the revocation of diving certifications. - 1) Shall recommend changes in policy and amendments to AAUS and the membership organization's diving safety manual as the need arises. - m) Shall establish and/or approve training programs through which the applicants for certification can satisfy the requirements of the University of Florida's diving safety manual. - n) Shall suspend diving programs that are considered to be unsafe or unwise. - o) Shall establish criteria for equipment selection and use. - p) Shall recommend new equipment or techniques. - q) Shall establish and/or approve facilities for the inspection and maintenance of diving and associated equipment. - r) Shall ensure that the University of Florida's air station(s) meet air quality standards as described in Section 3.60. - s) Shall periodically review the Diving Safety Officer's performance and program. - t) Shall sit as a board of investigation to inquire into the nature and cause of diving accidents or violations of the University of Florida's diving safety manual. #### **Instructional Personnel** - a) Qualifications All personnel involved in diving instruction under the auspices of the University of Florida shall be qualified for the type of instruction being given. - b) Selection Instructional personnel will be selected by the responsible administrative officer, or designee, who will solicit the advice of the DSB in conducting preliminary screening of applicants for instructional positions. #### Lead Diver For each dive, one individual shall be designated as the Lead Diver who shall be at the dive location during the diving operation. The Lead Diver shall be responsible for: - a) Coordination with other known activities in the vicinity that are likely to interfere with diving operations. - b) Ensuring all dive team members possess current certification and are qualified for the type of diving operation. - c) Planning dives in accordance with Section 2.20 - d) Ensuring safety and emergency equipment is in working order and at the dive site. - e) Briefing dive team members on: - 1. Dive objectives. - 2. Unusual hazards or environmental conditions likely to affect the safety of the diving operation. - 3. Modifications to diving or emergency procedures necessitated by the specific diving operation. - 4. Suspending diving operations if in their opinion conditions are not safe. - 5. Reporting to the DSO and DSB any physical problems or adverse physiological effects including symptoms of pressure-related injuries. #### Reciprocity and Visiting Scientific Diver - a) Two or more AAUS Organizational Members engaged jointly in diving activities, or engaged jointly in the use of diving resources, shall designate one of the participating Diving Safety Boards to govern the joint dive project. - b) A Scientific Diver from one Organizational Member shall apply for permission to dive under the auspices of another Organizational Member by submitting to the Diving Safety Officer of the host Organizational Member a document containing all the information described in Appendix 6, signed by the Diving Safety Officer or Chairperson of the home Diving Safety Board. - c) A visiting Scientific Diver may be asked to demonstrate their knowledge and skills for the planned dive. - d) If a host Organizational Member denies a visiting Scientific Diver permission to dive, the host Diving Safety Board shall notify the visiting Scientific Diver and their Diving Control Board with an explanation of all reasons for the denial. # Waiver of Requirements The UF Diving Safety Board may grant a waiver for specific requirements of training, examinations, depth certification, and minimum activity to maintain certification. The UF DSB may also waive specific requirements herein on a case-by-case request. # 1.30 Consequence of Violation of Regulations by Scientific Divers Failure to comply with the regulations of the UF's diving safety manual may be cause for the revocation or restriction of the diver's scientific diving certificate by action of the UF's Diving Safety Board. #### 1.40 Consequences of Violation of Regulations by Organizational Members Failure to comply with the regulations of this standard may be cause for the revocation or restriction of the UF's recognition by AAUS. #### 1.50 Record Maintenance The Diving Safety Officer or designee shall maintain permanent records for each Scientific Diver certified. The file shall include evidence of certification level, log sheets, results of current physical examination, reports of disciplinary actions by the UF Diving Safety Board, and other pertinent information deemed necessary. # Availability of Records: - a) Medical records shall be available to the attending physician of a diver or former diver when released in writing by the diver. - b) Records and documents required by this standard shall be retained by the UF for the following period: - 1. Physician's written reports of medical examinations for dive team members 5 years. - 2. Diving safety manual current document only. - 3. Records of dive 1 year, except 5 years where there has been an incident of pressure-related injury. - 4. Pressure-related injury assessment 5 years. - 5. Equipment inspection and testing records current entry or tag, or until equipment is withdrawn from service. # 1.60 Bloodborne Pathogens and Diving All dive activities that entail use of multiple divers and a Dive Supervisor (Dive Master or Instructor) will comply with the University of Florida 1995 Bloodborne Pathogen Program. An exposure
control plan, this program requires annual training and immunization for individuals expected to act as first responder, providing first aid and CPR, in the event of an accident. The Employee must be offered training and immunization in accordance with section (f) (2) of OSHA Regulation 29 CFR 1910.1041. Those who decline immunization must sign a declination statement. Records will be kept for three years indicating dates of training sessions, content outline and attendees and presenter list. # SECTION 2.00 DIVING REGULATIONS FOR SCUBA (OPEN CIRCUIT, COMPRESSED AIR) #### 2.10 Introduction No person shall engage in scientific diving operations under the auspices of the University of Florida's scientific diving program unless they hold a current certification issued pursuant to the provisions of this standard and is appropriately trained for the environment and technology used. #### 2.20 Pre-Dive Procedures #### **Dive Plans** Dives should be planned around the competency of the least experienced diver. Before conducting any diving operations under the auspices of the UF, the lead diver for a proposed operation must formulate a dive plan that should include the following: - a) Divers qualifications, and the type of certificate or certification held by each diver. - b) Emergency plan (Appendix 7) with the following information: - 1. Name, telephone number, and relationship of person to be contacted for each diver in the event of an emergency. - 2. Nearest operational decompression chamber. - 3. Nearest accessible hospital. - 4. Available means of transport. - c) Approximate number of proposed dives. - d) Location(s) of proposed dives. - e) Estimated depth(s) and bottom time(s) anticipated. - f) Decompression status and repetitive dive plans, if required. - g) Proposed work, equipment, and boats to be employed. - h) Any hazardous conditions anticipated. # Pre-dive Safety Checks - a) Diver's Responsibility: - 1. Scientific divers shall conduct a functional check of their diving equipment in the presence of the diving buddy or tender. - 2. It is the diver's responsibility and duty to refuse to dive if, in their judgment, conditions are unfavorable, or if they would be violating the precepts of their training, of this standard, or the UF's diving safety manual. - 3. No dive team member shall be required to be exposed to hyperbaric conditions against their will, except when necessary to prevent or treat a pressure-related injury. - 4. No dive team member shall be permitted to dive for the duration of any known condition, which is likely to adversely affect the safety and health of the diver or other dive members. # b) Equipment Evaluations - 1. Divers shall ensure that their equipment is in proper working order and that the equipment is suitable for the type of diving operation. - 2. Each diver shall have the capability of achieving and maintaining positive buoyancy. - c) Site Evaluation Environmental conditions at the site will be evaluated. # 2.30 Diving Procedures # Solo Diving Prohibition All diving activities shall assure adherence to the buddy system for scuba diving. This buddy system is based upon mutual assistance, especially in the case of an emergency. #### Refusal to Dive - a) The decision to dive is that of the diver. A diver may refuse to dive, without fear of penalty, whenever they feel it is unsafe for them to make the dive. - b) Safety The ultimate responsibility for safety rests with the individual diver. It is the diver's responsibility and duty to refuse to dive if, in their judgment, conditions are unsafe or unfavorable, or if they would be violating the precepts of their training or the regulations in this standard. #### Termination of the Dive - a) It is the responsibility of the diver to terminate the dive, without fear of penalty, whenever they feel it is unsafe to continue the dive, unless it compromises the safety of another diver already in the water. - b) The dive shall be terminated while there is still sufficient cylinder pressure to permit the diver to safely reach the surface, including decompression time, or to safely reach an additional air source at the decompression station. #### Emergencies and Deviations from Regulations Any diver may deviate from the requirements of this standard to the extent necessary to prevent or minimize a situation that is likely to cause death, serious physical harm, or major environmental damage. A written report of such actions must be submitted to the Diving Control Board explaining the circumstances and justifications. #### 2.40 Post-Dive Procedures # Post-Dive Safety Checks - a) After the completion of a dive, each diver shall report any physical problems, symptoms of decompression sickness, or equipment malfunctions. - b) When diving outside the no-decompression limits, the divers should remain awake for at least 1 hour after diving, and in the company of a dive team member who is prepared to transport them to a decompression chamber if necessary. # 2.50 Emergency Procedures The University of Florida Lead diver will develop emergency procedures which follow the standards of care of the community and must include procedures for emergency care, recompression and evacuation for each dive location (Appendix 7). # 2.60 Flying After Diving or Ascending to Altitude (Over 1000 feet) Following a Single No-Decompression Dive: Divers should have a minimum preflight surface interval of 12 hours. Following Multiple Dives per Day or Multiple Days of Diving: Divers should have a minimum preflight surface interval of 18 hours. Following Dives Requiring Decompression Stops: Divers should have a minimum preflight surface interval of 24 hours. Before ascending to Altitude above (1000 feet) by Land Transport: Divers should follow the appropriate guideline for preflight surface intervals unless the decompression procedure used has accounted for the increase in elevation. # 2.70 Record Keeping Requirements # Personal Diving Log Each certified scientific diver shall log every dive made under the auspices of the University of Florida's Diving Science and Safety Program (DSSP), and is encouraged to log all other dives. Standard forms will be provided by the DSSP. Log sheets shall be submitted monthly to the Diving Safety Officer to be placed in the diver's permanent file. Details of the submission procedures are left to the discretion of the Diving Safety Officer. The diving log shall be in a form specified by the DSSP and shall include at least the following: - a) Name of diver, buddy, and Lead Diver. - b) Date, time, and location. - c) Diving modes used. - d) General nature of diving activities. - e) Approximate surface and underwater conditions. - f) Maximum depths, bottom time, and surface interval time. - g) Diving tables or computers used. - h) Detailed report of any near or actual incidents (documented on a separate form). # Required Incident Reporting All diving incidents requiring recompression treatment, or resulting in moderate or serious injury, or death shall be reported to the University of Florida's Diving Control Board and the AAUS. The UF's regular procedures for incident reporting, including those required by the AAUS, shall be followed. The report will specify the circumstances of the incident and the extent of any injuries or illnesses. Additional information must meet the following reporting requirements: - a) UF Lead diver shall record and report occupational injuries and illnesses in accordance with requirements of the appropriate Labor Code section. - b) If pressure-related injuries are suspected, or if symptoms are evident, the following additional information shall be recorded and retained by the UF, with the record of the dive, for a period of 5 years: - 1. Complete AAUS Incident Report at http://www.aaus.org. - 2. Written descriptive report to include: - Name, address, phone numbers of the principal parties involved. - Summary of experience of divers involved. - Location, description of dive site, and description of conditions that led up to incident. - Description of symptoms, including depth and time of onset. - Description and results of treatment. - Disposition of case. - Recommendations to avoid repetition of incident. - c) The DSO shall investigate and document any incident of pressure-related injury and prepare a report that is to be forwarded to AAUS during the annual reporting cycle. This report must first be reviewed and released by the Diving Control Board. # **SECTION 3.00 DIVING EQUIPMENT** #### 3.10 General Policy All equipment shall meet standards as determined by the Diving Safety Officer and the Diving Control Board. Equipment that is subjected to extreme usage under adverse conditions should require more frequent testing and maintenance. The DCB or DSO may require or recommend, as appropriate, the removal of outmoded or otherwise unsafe equipment from service. All equipment shall be regularly examined by the person using them. # 3.20 Equipment # Regulators - a) Only those makes and models specifically approved by the Diving Safety Officer and the Diving Control Board shall be used. - b) Scuba regulators shall be inspected and tested prior to first use and every 12 months thereafter. - c) Regulators will consist of a primary second stage and an alternate air source (such as an octopus second stage or redundant air supply). # Breathing Masks and Helmets Breathing masks and helmets shall have: - a) A non-return valve at the attachment point between helmet or mask and hose, which shall close readily and positively. - b) An exhaust valve. - c) A minimum ventilation rate capable of maintaining the diver at the depth to which they are diving. #### Scuba Cylinders - a) Scuba cylinders shall be designed, constructed, and maintained in accordance with the applicable provisions of the Unfired Pressure Vessel Safety Orders. - b) Scuba cylinders must be hydrostatically tested in accordance with DOT standards. - c) Scuba cylinders must have
an internal and external inspection at intervals not to exceed 12 months. - d) Scuba cylinder valves shall be functionally tested at intervals not to exceed 12 months. #### Backpacks Backpacks without integrated flotation devices and weight systems shall have a quick release device designed to permit jettisoning with a single motion from either hand. #### Gauges Gauges shall be inspected and tested before first use and every 12 months thereafter. #### Flotation Devices - a) Each diver shall have the capability of achieving and maintaining positive buoyancy. - b) Personal flotation systems, buoyancy compensators, dry suits, or other variable volume buoyancy compensation devices shall be equipped with an exhaust valve. * A drysuit may not be used without a buoyancy compensator. - c) These devices shall be functionally inspected and tested at intervals not to exceed 12 months. # Timing Devices, Depth, and Pressure Gauges Both members of the buddy team must have an underwater timing device, an approved depth indicator, and a submersible pressure gauge. # Determination of Decompression Status: Dive Tables, Dive Computers - a) A set of diving tables, approved by the Diving Control Board, must be available at the dive location. - b) Dive computers may be utilized in place of diving tables, and must be approved by the Diving Control Board. AAUS recommendations on dive computers are located in appendix 8 - c) 3.30 Auxiliary Equipment Hand held underwater power tools. Electrical tools and equipment used underwater shall be specifically approved for this purpose. Electrical tools and equipment supplied with power from the surface shall be de-energized before being placed into or retrieved from the water. Hand held power tools shall not be supplied with power from the dive location until requested by the diver. # 3.40 Support Equipment #### First aid supplies A first aid kit and emergency oxygen shall be available at the dive location. #### Diver's Flag A diver's flag shall be displayed prominently whenever diving is conducted under circumstances where required or where water traffic is probable. #### Compressor Systems The following will be considered in design and location of compressor systems: - a) Low-pressure compressors used to supply air to the diver if equipped with a volume tank shall have a check valve on the inlet side, a relief valve, and a drain valve. - b) Compressed air systems over 500 psig shall have slow-opening shut-off valves. - c) All air compressor intakes shall be located away from areas containing exhaust or other contaminants. - d) High pressure systems will have a gas analysis quarterly to insure air purity. # 3.50 Equipment Maintenance #### Record Keeping Each equipment modification, repair, test, calibration, or maintenance service shall be logged, including the date and nature of work performed, serial number of the item, and the name of the person performing the work for the following equipment: - a) Regulators - b) Submersible pressure gauges - c) Depth gauges - d) Scuba cylinders - e) Cylinder valves - f) Diving helmets - g) Submersible breathing masks - h) Compressors - i) Gas control panels - j) Air storage cylinders - k) Air filtration systems - 1) Analytical instruments - m) Buoyancy control devices - n) Dry suits # Compressor Operation and Air Test Records - a) Gas analyses and air tests shall be performed on each organizational member-controlled breathing air compressor at regular intervals of no more than 100 hours of operation or 6 months, whichever occurs first. The results of these tests shall be entered in a formal log and be maintained. - b) A log shall be maintained showing operation, repair, overhaul, filter maintenance, and temperature adjustment for each compressor. #### 3.60 Air Quality Standards Breathing air for scuba shall meet the following specifications as set forth by the Compressed Gas Association (CGA Pamphlet G-7.1). | CGA Grade E | | | |-------------------------------|------------|--| | Component | Maximum | | | Oxygen | 20 - 22%/v | | | Carbon Monoxide | 10 PPM/v | | | Carbon Dioxide | 1000 PPM/v | | | Condensed Hydrocarbons | 5 mg/m3 | | | Total Hydrocarbons as Methane | 25 PPM/v | | | Water Vapor ppm | (2) | | | Objectionable Odors | None | | For breathing air used in conjunction with self-contained breathing apparatus in extreme cold where moisture can condense and freeze, causing the breathing apparatus to malfunction, a dew point not to exceed -50° F (63 pm v/v) or 10 degrees lower than the coldest temperature expected in the area is required. # SECTION 4.00 ENTRY-LEVEL TRAINING REQUIREMENTS This section describes training for the non-diver applicant, previously not certified for diving, and equivalency for the certified diver. #### 4.10 Evaluation #### Medical Examination The applicant for training shall be certified by a licensed physician to be medically qualified for diving before proceeding with the training as designated in Section 4.20 (Section 6.00 and Appendices 1 through 4). # Swimming Evaluation Applicant shall successfully perform the following tests, or equivalent, in the presence of the Diving Safety Officer, or an examiner approved by the Diving Safety Officer. - a) Swim underwater without swim aids for a distance of 25 yards without surfacing. - b) Swim 400 yards in less than 12 minutes without swim aids. - c) Tread water for 10 minutes, or 2 minutes without the use of hands, without swim aids. - d) Without the use of swim aids, transport another person of equal size a distance of 25 yards in the water. # 4.20 Scuba Training # **Practical Training** At the completion of training, the trainee must satisfy the Diving Safety Officer or the instructor of their ability to perform the following, as a minimum, in a pool or in sheltered water: - a) Enter water with full equipment. - b) Clear face mask. - c) Demonstrate air sharing, including both buddy breathing and the use of alternate air source, as both donor and recipient, with and without a face mask. - d) Demonstrate ability to alternate between snorkel and scuba while kicking. - e) Demonstrate understanding of underwater signs and signals. - f) Demonstrate simulated in-water mouth-to-mouth resuscitation. - g) Rescue and transport, as a diver, a passive simulated victim of an accident. - h) Demonstrate ability to remove and replace equipment while submerged. - i) Demonstrate watermanship ability, which is acceptable to the instructor. #### Written Examination Before completing training, the trainee must pass a written examination that demonstrates knowledge of at least the following: - a) Function, care, use, and maintenance of diving equipment. - b) Physics and physiology of diving. - c) Diving regulations and precautions. - d) Near-shore currents and waves. - e) Dangerous marine animals. - f) Emergency procedures, including buoyant ascent and ascent by air sharing. - g) Currently accepted decompression procedures. - h) Demonstrate the proper use of dive tables. - i) Underwater communications. - j) Aspects of freshwater and altitude diving. - k) Hazards of breath-hold diving and ascents. - 1) Planning and supervision of diving operations. - m) Diving hazards. - n) Cause, symptoms, treatment, and prevention of the following: near drowning, air embolism, carbon dioxide excess, squeezes, oxygen poisoning, nitrogen narcosis, exhaustion and panic, respiratory fatigue, motion sickness, decompression sickness, hypothermia, and hypoxia/anoxia. # Open Water Evaluation The trainee must satisfy an instructor, approved by the Diving Safety Officer, of their ability to perform at least the following in open water: - a) Surface dive to a depth of 10 feet in open water without scuba. - b) Demonstrate proficiency in air sharing as both donor and receiver. - c) Enter and leave open water or surf, or leave and board a diving vessel, while wearing scuba gear. - d) Kick on the surface 400 yards while wearing scuba gear, but not breathing from the scuba unit. - e) Demonstrate judgment adequate for safe diving. - f) Demonstrate, where appropriate, the ability to maneuver efficiently in the environment, at and below the surface. - g) Complete a simulated emergency swimming ascent. - h) Demonstrate clearing of mask and regulator while submerged. - i) Demonstrate ability to achieve and maintain neutral buoyancy while submerged. - j) Demonstrate techniques of self-rescue and buddy rescue. - k) Navigate underwater. - 1) Plan and execute a dive. - m) Successfully complete 5 open water dives for a minimum total time of 3 hours, of which 1-1/2 hours cumulative bottom time must be on scuba. No more than 3 training dives shall be made in any 1 day. #### SECTION 5.00 SCIENTIFIC DIVER CERTIFICATION #### **5.10 Certification Types** Scientific Diver Certification This is a permit to dive, usable only while it is current and for the purpose intended. # **Temporary Diver Permit** This permit constitutes a waiver of the requirements of Section 5.00 and is issued only following a demonstration of the required proficiency in diving. It is valid only for a limited time, as determined by the Diving Safety Officer. This permit is not to be construed as a mechanism to circumvent existing standards set forth in this standard. a) Requirements of this section may be waived by the Diving Safety Officer if the person in question has demonstrated proficiency in diving and can contribute measurably to a planned dive. A statement of the temporary diver's qualifications shall be submitted to the Diving Safety Officer as a part of the dive plan. Temporary permits shall be restricted to the planned diving operation and shall comply with all other policies, regulations, and standards of this standard, including medical requirements. # **5.20 General Policy** AAUS requires that no person shall engage in scientific diving unless that person is authorized by an organizational member pursuant to the provisions of this standard. Only a
person diving under the auspices of the organizational member that subscribes to the practices of AAUS is eligible for a scientific diver certification. # 5.30 Requirements For Scientific Diver Certification Submission of documents and participation in aptitude examinations does not automatically result in certification. The applicant must convince the Diving Safety Officer and members of the DCB that they are sufficiently skilled and proficient to be certified. This skill will be acknowledged by the signature of the Diving Safety Officer. Any applicant who does not possess the necessary judgment, under diving conditions, for the safety of the diver and their partner, may be denied UF scientific diving privileges. Minimum documentation and examinations required are as follows: #### Prerequisites - a) Application Application for certification shall be made to the Diving Safety Officer on the form prescribed by the organizational member. - b) Medical approval. Each applicant for diver certification shall submit a statement from a licensed physician, based on an approved medical examination, attesting to the applicant's fitness for diving (Section 6.00 and Appendices 1 through 4). - c) Scientific Diver-In-Training Permit This permit signifies that a diver has completed and been certified as at least an open water diver through an internationally recognized certifying agency or scientific diving program, and has the knowledge skills and experience to that gained by successful completion of training as specified in Section 4.00. # Theoretical and Practical Training The diver must complete theoretical aspects and practical training for a minimum cumulative time of 100 hours. Theoretical aspects shall include principles and activities appropriate to the intended area of scientific study. - a) Required Topics (include, but not limited to): - 1. Diving Emergency Care Training - Cardiopulmonary Resuscitation (CPR) - Standard or Basic First Aid - Recognition of DCS and AGE - Accident Management - Field Neurological Exam - Oxygen Administration - 2. Dive Rescue - 3. Dive Physics - 4. Dive Physiology - 5. Dive Environments - 6. Decompression Theory and its Application - 7. AAUS Scientific Diving Regulations and History - Scientific Dive Planning - Coordination with other Agencies - Appropriate Governmental Regulations - 8. Scientific Method - 9. Data Gathering Techniques (Only Items specific to area of study are required) - Transect Sampling (Quadrating) - Transecting - Mapping - Coring - Photography - Tagging - Collecting - Animal Handling - Archaeology - Common Biota - Organism Identification - Behavior - Ecology - Site Selection, Location, and Re-location - Specialized Equipment for data gathering - 10. HazMat Training - HP Cylinders - Chemical Hygiene, Laboratory Safety (Use Of Chemicals) - b) Suggested Topics (include, but not limited to): - 1. Specific Dive Modes (methods of gas delivery) - Open Circuit - Hooka - Surface Supplied diving - 2. Small Boat Operation - 3. Rebreathers - Closed - Semi-closed - 4. Specialized Breathing Gas - Nitrox - Mixed Gas - 5. Specialized Environments and Conditions - Blue Water Diving, - Ice and Polar Diving (Cold Water Diving) - Zero Visibility Diving - Polluted Water Diving, - Saturation Diving - Decompression Diving - Overhead Environments - Aquarium Diving - Night Diving - Kelp Diving - Strong Current Diving (Live-boating) - Potential Entanglement - 6. Specialized Diving Equipment - Full face mask - Dry Suit - Communications - c) Practical training must include a checkout dive, with evaluation of the skills listed in Section 4.20 (Open Water Evaluation), with the DSO or qualified delegate followed by at least 11 ocean or open water dives in a variety of dive sites and diving conditions, for a cumulative bottom time of 6 hours. Dives following the checkout dive must be supervised by a certified Scientific Diver with experience in the type of diving planned, with the knowledge and permission of the DSO. # d) Examinations - 1. Written examination - General exam required for scientific diver certification. - Examination covering the suggested topics at the DSO's discretion. - 2. Examination of equipment. - Personal diving equipment - Task specific equipment # **5.40 Depth Certifications** Depth Certifications and Progression to Next Depth Level A certified diver diving under the auspices of the University of Florida may progress to the next depth level after successfully completing the required dives for the next level. Under these circumstances the diver may exceed their depth limit. Dives shall be planned and executed under close supervision of a diver certified to this depth, with the knowledge and permission of the DSO. - a) Certification to 30 Foot Depth Initial permit level, approved upon the successful completion of training listed in Section 4.00 and 5.30. - b) Certification to 60 Foot Depth A diver holding a 30 foot certificate may be certified to a depth of 60 feet after successfully completing, under supervision, 12 logged training dives to depths between 31 and 60 feet, for a minimum total time of 4 hours. - c) Certification to 100 Foot Depth A diver holding a 60 foot certificate may be certified to a depth of 100 feet after successfully completing, 4 dives to depths between 61 and 100 feet. The diver shall also demonstrate proficiency in the use of the appropriate Dive Tables. - d) Certification to 130 Foot Depth A diver holding a 100 foot certificate may be certified to a depth of 130 feet after successfully completing, 4 dives to depths between 100 and 130 feet. The diver shall also demonstrate proficiency in the use of the appropriate Dive Tables. - e) Certification to 150 Foot Depth A diver holding a 130 foot certificate may be certified to a depth of 150 feet after successfully completing, 4 dives to depths between 130 and 150 feet. The diver must also demonstrate knowledge of the special problems of deep diving, and of special safety requirements. - f) Certification to 190 Foot Depth A diver holding a 150 foot certificate may be certified to a depth of 190 feet after successfully completing, 4 dives to depths between 150 and 190 feet. The diver must also demonstrate knowledge of the special problems of deep diving, and of special safety requirements. Diving on air is not permitted beyond a depth of 190 feet. #### 5.50 Continuation of Certificate #### Minimum Activity to Maintain Certification During any 12-month period, each certified scientific diver must log a minimum of 12 dives. At least one dive must be logged near the maximum depth of the diver's certification during each 6-month period. Divers certified to 150 feet or deeper may satisfy these requirements with dives to 130 feet or over. Failure to meet these requirements may be cause for revocation or restriction of certification. If no dive is made for a six month period, an orientation dive or checkout dive may be required with an appropriately skilled and proficient examiner. #### Re-qualification of Depth Certificate Once the initial certification requirements of Section 5.30 are met, divers whose depth certification has lapsed due to lack of activity may be re-qualified by a checkout dive processed by a suitable diver examiner as specified by the DCB or DSO. #### **Medical Examination** All certified scientific divers shall pass a medical examination at the intervals specified in Section 6.10. After each major illness or injury, as described in Section 6.10, a certified scientific diver shall receive clearance to return to diving from a physician before resuming diving activities. # Emergency Care Training. The scientific diver must provide proof of training in the following: - Adult CPR (must be current). - Emergency oxygen administration (must be current) - First aid for diving accidents (must be current) # **5.60 Revocation of Certification** A diving certificate may be revoked or restricted for cause by the Diving Safety Officer or the DCB. Violations of regulations set forth in this standard, or other governmental subdivisions not in conflict with this standard, may be considered cause. Diving Safety Officer shall inform the diver in writing of the reason(s) for revocation. The diver will be given the opportunity to present their case in writing for reconsideration and/or re-certification. All such written statements and requests, as identified in this section, are formal documents, which will become part of the diver's file. #### 5.70 Recertification If a diver's certificate expires or is revoked, they may be re-certified after complying with such conditions as the Diving Safety Officer or the DCB may impose. The diver shall be given an opportunity to present their case to the DCB before conditions for re-certification are stipulated. #### **SECTION 6.00 MEDICAL STANDARDS** #### **6.10 Medical Requirements** #### General - a) The Diving Safety Officer shall determine that divers have passed a current diving physical examination and have been declared by the examining physician to be fit to engage in diving activities as may be limited or restricted in the medical evaluation report. - b) All medical evaluations required by this standard shall be performed by, or under the direction of, a licensed physician of the applicant-diver's choice, preferably one trained in diving/undersea medicine. - c) The diver should be free of any chronic disabling disease and be free of any conditions contained in the list of conditions for which restrictions from diving are generally recommended. (Appendix 1) # Frequency of Medical Evaluations Medical evaluation shall be completed: - a) Before a diver may begin diving, unless an equivalent initial medical evaluation has been given within the preceding 5 years (3 years if over the age of 40, 2 years if over the age of 60), the member organization has obtained the results of that examination, and those results have been reviewed and found satisfactory by the member
organization. - b) Thereafter, at 5 year intervals up to age 40, every 3 years after the age of 40, and every 2 years after the age of 60. - c) Clearance to return to diving must be obtained from a physician following any major injury or illness, or any condition requiring hospital care. If the injury or illness is pressure related, then the clearance to return to diving must come from a physician trained in diving medicine. # Information Provided Examining Physician The diver shall provide a copy of the medical evaluation requirements of this standard to the examining physician. (Appendices 1, 2, and 3). #### Content of Medical Evaluations Medical examinations conducted initially and at the intervals specified in Section 6.10 shall consist of the following: - a) Applicant agreement for release of medical information to the Diving Safety Officer and the DCB (Appendix 2). - b) Medical history (Appendix 3). - c) Diving physical examination (Required tests listed below and in Appendix 2). #### Conditions Which May Disqualify Candidates From Diving (Adapted from Bove, 1998) - a) Abnormalities of the tympanic membrane, such as perforation, presence of a monomeric membrane, or inability to auto inflate the middle ears. - b) Hearing loss; Vertigo including Meniere's Disease. - c) Stapedectomy or middle ear reconstructive surgery. - d) Recent ocular surgery. - e) Psychiatric disorders including claustrophobia, suicidal ideation, psychosis, anxiety states, untreated depression. - f) Substance abuse, including alcohol. - g) Episodic loss of consciousness. - h) History of seizure. - i) History of stroke or a fixed neurological deficit. - j) Recurring neurologic disorders, including transient ischemic attacks. - k) History of intracranial aneurysm, other vascular malformation or intracranial hemorrhage. - 1) History of neurological decompression illness with residual deficit. - m) Head injury. - n) Hematologic disorders including coagulopathies. - o) Risk factors or evidence of coronary artery disease. - p) Atrial septal defects. - q) Significant valvular heart disease isolated mitral valve prolapse is not disqualifying. - r) Significant cardiac rhythm or conduction abnormalities. - s) Implanted cardiac pacemakers and cardiac defibrillators (ICD). - t) Inadequate exercise tolerance. - u) Hypertension. - v) History of pneumothorax. - w) Asthma. - x) Chronic pulmonary disease, including radiographic evidence of pulmonary blebs, bullae or cysts. - y) Diabetes mellitus. - z) Pregnancy. #### Laboratory Requirements for Diving Medical Evaluation and Intervals. - a) Initial examination under age 40: - * Medical History - * Complete Physical Exam, emphasis on neurological and otological components - * Urinalysis - * Any further tests deemed necessary by the physician. - b) Periodic re-examination under age 40 (every 5 years): - * Medical History - * Complete Physical Exam, emphasis on neurological and otological components - * Urinalysis - * Any further tests deemed necessary by the physician - c) Initial exam over age 40: - * Medical History - * Complete Physical Exam, emphasis on neurological and otological components - * Detailed assessment of coronary artery disease risk factors using Multiple-Risk-Factor Assessment^{1,2} (age, family history, lipid profile, blood pressure, diabetic screening, smoking history). Further cardiac screening may be indicated based on risk factor assessment. - * Resting EKG - * Chest X-ray - * Urinalysis - * Any further tests deemed necessary by the physician - d) Periodic re-examination over age 40 (every 3 years); over age 60 (every 2 years): - * Medical History - * Complete Physical Exam, emphasis on neurological and otological components - * Detailed assessment of coronary artery disease risk factors using Multiple-Risk-Factor Assessment¹ (age, family history, lipid profile, blood pressure, diabetic screening, smoking history). Further cardiac screening may be indicated based on risk factor assessment. - * Resting EKG - * Urinalysis - * Any further tests deemed necessary by the physician - e) Physician's Written Report - 1. After any medical examination relating to the individual's fitness to dive, the DSO shall obtain a written report prepared by the examining physician, that shall contain the examining physician's opinion of the individual's fitness to dive, including any recommended restrictions or limitations. This will be reviewed by the DCB. - 2. The DSO shall make a copy of the physician's written report available to the individual. Revised 2/1/12 Page 28 ¹ Grundy, R.J. et. al. 1999. Assessment of Cardiovascular Risk by Use of Multiple-Risk-Factor Assessment Equations. AHA/ACC Scientific Statement. http://www.acc.org/clinical/consensus/risk/risk1999.pdf ² Bove, A.A. 2011. The cardiovascular system and diving risk. *Undersea and Hyperbaric Medicine* 38(4): 261-269. # Volume 2 Sections 7.00 through 11.00 Required Only When Conducting Described Diving Activities and Organizational Member Specific Sections #### **SECTION 7.00 NITROX DIVING GUIDELINES** The following guidelines address the use of nitrox by scientific divers under the auspices of the University of Florida. Nitrox is defined for these guidelines as breathing mixtures composed predominately of nitrogen and oxygen, most commonly produced by the addition of oxygen or the removal of nitrogen from air. # 7.10 Prerequisites # Eligibility Only a certified Scientific Diver or Scientific Diver In Training (Sections 4.00 and 5.00) diving under the auspices of the University of Florida is eligible for authorization to use nitrox. After completion, review and acceptance of application materials, training and qualification, an applicant will be authorized to use nitrox within their depth authorization, as specified in Section 5.40. #### **Application and Documentation** Application and documentation for authorization to use nitrox should be made on forms specified by the Diving Control Board. #### 7.20 Requirements for Authorization to Use Nitrox Submission of documents and participation in aptitude examinations does not automatically result in authorization to use nitrox. The applicant must convince the DSO and members of the DCB that they are sufficiently skilled and proficient. The signature of the DSO on the authorization form will acknowledge authorization. After completion of training and evaluation, authorization to use nitrox may be denied to any diver who does not demonstrate to the satisfaction of the DSO or DCB the appropriate judgment or proficiency to ensure the safety of the diver and dive buddy. Prior to authorization to use nitrox, the following minimum requirements should be met: #### **Training** The diver must complete additional theoretical and practical training beyond the Scientific Diver In Training air certification level, to the satisfaction of the DSO and DCB (Section 7.30). #### **Examinations** Each diver should demonstrate proficiency in skills and theory in written, oral, and practical examinations covering: - a) Written examinations covering the information presented in the classroom training session(s) (i.e., gas theory, oxygen toxicity, partial pressure determination, etc.); - b) Practical examinations covering the information presented in the practical training session(s) (i.e., gas analysis, documentation procedures, etc.); - c) Openwater checkout dives, to appropriate depths, to demonstrate the application of theoretical and practical skills learned. #### Minimum Activity to Maintain Authorization The diver should log at least one nitrox dive per year. Failure to meet the minimum activity level may be cause for restriction or revocation of nitrox authorization. # 7.30 Nitrox Training Guidelines Training in these guidelines should be in addition to training for Diver-In-Training authorization (Section 4.00). It may be included as part of training to satisfy the Scientific Diver training requirements (Section 5.30). #### Classroom Instruction - d) Topics should include, but are not limited to: review of previous training; physical gas laws pertaining to nitrox; partial pressure calculations and limits; equivalent air depth (EAD) concept and calculations; oxygen physiology and oxygen toxicity; calculation of oxygen exposure and maximum safe operating depth (MOD); determination of decompression schedules (both by EAD method using approved air dive tables, and using approved nitrox dive tables); dive planning and emergency procedures; mixing procedures and calculations; gas analysis; personnel requirements; equipment marking and maintenance requirements; dive station requirements. - e) DCB may choose to limit standard nitrox diver training to procedures applicable to diving, and subsequently reserve training such as nitrox production methods, oxygen cleaning, and dive station topics to divers requiring specialized authorization in these areas. # **Practical Training** The practical training portion will consist of a review of skills as stated for scuba (Section 4.00), with additional training as follows: - a) Oxygen analysis of nitrox mixtures. - b) Determination of MOD, oxygen partial pressure exposure, and oxygen toxicity time limits, for various nitrox mixtures at various depths. - c) Determination of nitrogen-based dive limits status by EAD method using air dive tables, and/or using nitrox dive tables, as approved by the DCB. - d) Nitrox dive computer use may be included, as approved by the DCB. #### Written Examination (based on classroom instruction and practical training) Before authorization, the trainee should successfully pass a written examination demonstrating knowledge of at least the following: - a) Function, care, use, and maintenance of equipment cleaned for nitrox use. - b) Physical and physiological considerations of nitrox diving (ex.: O₂ and CO₂ toxicity). - c) Diving regulations and procedures as related to nitrox
diving, either scuba or surfacesupplied (depending on intended mode). - d) Given the proper information, calculation of: - 1. Equivalent air depth (EAD) for a given fO_2 and actual depth; - 2. pO_2 exposure for a given fO_2 and depth; - 3. Optimal nitrox mixture for a given pO₂ exposure limit and planned depth; - 4. Maximum operational depth (MOD) for a given mix and pO_2 exposure limit; - 5. For nitrox production purposes, percentages/psi of oxygen present in a given mixture, and psi of each gas required to produce a fO₂ by partial pressure mixing. e) Dive table and dive computer selection and usage; - f) Nitrox production methods and considerations. - g) Oxygen analysis. - h) Nitrox operational guidelines (Section 7.40), dive planning, and dive station components. # Openwater Dives A minimum of two supervised openwater dives using nitrox is required for authorization. The mode used in the dives should correspond to the intended application (i.e., scuba or surface-supplied). If the MOD for the mix being used can be exceeded at the training location, direct, inwater supervision is required. # Surface-Supplied Training All training as applied to surface-supplied diving (practical, classroom, and openwater) will follow the member organization's surface-supplied diving standards, including additions listed in Section 11.60. # 7.40 Scientific Nitrox Diving Regulations #### **Dive Personnel Requirements** - a) Nitrox Diver In Training A Diver In Training, who has completed the requirements of Section 4.00 and the training and authorization sections of these guidelines, may be authorized by the DSO to use nitrox under the direct supervision a Scientific Diver who also holds nitrox authorization. Dive depths should be restricted to those specified in the diver's authorization. - b) Scientific Diver A Scientific Diver who has completed the requirements of Section 5.00 and the training and authorization sections of these guidelines, may be authorized by the DSO to use nitrox. Depth authorization to use nitrox should be the same as those specified in the diver's authorization, as described in Section. 5.40. - c) Lead Diver On any dive during which nitrox will be used by any team member, the Lead Diver should be authorized to use nitrox, and hold appropriate authorizations required for the dive, as specified in AAUS Standards. Lead Diver authorization for nitrox dives by the DSO and/or DCB should occur as part of the dive plan approval process. In addition to responsibilities listed in Section 1.20, the Lead Diver should: - 1. As part of the dive planning process, verify that all divers using nitrox on a dive are properly qualified and authorized; - 2. As part of the pre-dive procedures, confirm with each diver the nitrox mixture the diver is using, and establish dive team maximum depth and time limits, according to the shortest time limit or shallowest depth limit among the team members. - 3. The Lead Diver should also reduce the maximum allowable pO_2 exposure limit for the dive team if on-site conditions so indicate (see Sec. 7.42.). #### **Dive Parameters** # a) Oxygen Exposure Limits - 1. The inspired oxygen partial pressure experienced at depth should not exceed 1.6 ATA. All dives performed using nitrox breathing mixtures should comply with the current *NOAA Diving Manual* "Oxygen Partial Pressure Limits for 'Normal' Exposures" - 2. The maximum allowable exposure limit should be reduced in cases where cold or strenuous dive conditions, or extended exposure times are expected. The DCB should consider this in the review of any dive plan application, which proposes to use nitrox. The Lead Diver should also review on-site conditions and reduce the allowable pO₂ exposure limits if conditions indicate. - 3. If using the equivalent air depth (EAD) method the maximum depth of a dive should be based on the oxygen partial pressure for the specific nitrox breathing mix to be used. # b) Bottom Time Limits - 1. Maximum bottom time should be based on the depth of the dive and the nitrox mixture being used. - 2. Bottom time for a single dive should not exceed the NOAA maximum allowable "Single Exposure Limit" for a given oxygen partial pressure, as listed in the current NOAA Diving Manual. # c) Dive Tables and Gases - 1. A set of DCB approved nitrox dive tables should be available at the dive site. - 2. When using the equivalent air depth (EAD) method, dives should be conducted using air dive tables approved by the DCB. - 3. If nitrox is used to increase the safety margin of air-based dive tables, the MOD and oxygen exposure and time limits for the nitrox mixture being dived should not be exceeded - 4. Breathing mixtures used while performing in-water decompression, or for bail-out purposes, should contain the same or greater oxygen content as that being used during the dive, within the confines of depth limitations and oxygen partial pressure limits set forth in Section 7.40 Dive Parameters. # d) Nitrox Dive Computers - 1. Dive computers may be used to compute decompression status during nitrox dives. Manufacturers' guidelines and operations instructions should be followed. - 2. Use of Nitrox dive computers should comply with dive computer guidelines included in the AAUS Standards. - 3. Nitrox dive computer users should demonstrate a clear understanding of the display, operations, and manipulation of the unit being used for nitrox diving prior to using the computer, to the satisfaction of the DSO or designee. - 4. If nitrox is used to increase the safety margin of an air-based dive computer, the MOD and oxygen exposure and time limits for the nitrox mixture being dived should not be exceeded. - 5. Dive computers capable of pO₂ limit and fO₂ adjustment should be checked by the diver prior to the start each dive to assure compatibility with the mix being used. # e) Repetitive Diving - 1. Repetitive dives using nitrox mixtures should be performed in compliance with procedures required of the specific dive tables used. - 2. Residual nitrogen time should be based on the EAD for the specific nitrox mixture to be used on the repetitive dive, and not that of the previous dive. - 3. The total cumulative exposure (bottom time) to a partial pressure of oxygen in a given 24 hour period should not exceed the current *NOAA Diving Manual* 24-hour Oxygen Partial Pressure Limits for "Normal" Exposures. - 4. When repetitive dives expose divers to different oxygen partial pressures from dive to dive, divers should account for accumulated oxygen exposure from previous dives when determining acceptable exposures for repetitive dives. Both acute (CNS) and chronic (pulmonary) oxygen toxicity concerns should be addressed. # f) Oxygen Parameters - 1. Authorized Mixtures Mixtures meeting the criteria outlined in Section 7.40 may be used for nitrox diving operations, upon approval of the DCB. - 2. Purity Oxygen used for mixing nitrox-breathing gas should meet the purity levels for "Medical Grade" (U.S.P.) or "Aviator Grade" standards. In addition to the AAUS Air Purity Guidelines (Section 3.60), the following standard should be met for breathing air that is either: - a. Placed in contact with oxygen concentrations greater than 40%. - b. Used in nitrox production by the partial pressure mixing method with gas mixtures containing greater than 40% oxygen as the enriching agent. | Air Purity: CGA Grade E (Section 3.60) | | | |--|---------------------------------------|--| | Condensed Hydrocarbons | 5mg/m^3 | | | Hydrocarbon Contaminants | No greater than 0.1 mg/m ³ | | - g) Gas Mixing and Analysis for Organizational Members - 1. Personnel Requirements - a. Individuals responsible for producing and/or analyzing nitrox mixtures should be knowledgeable and experienced in all aspects of the technique. - b. Only those individuals approved by the DSO and/or DCB should be responsible for mixing and/or analyzing nitrox mixtures. - 2. Production Methods It is the responsibility of the DCB to approve the specific nitrox production method used. - 3. Analysis Verification by User - a. It is the responsibility of each diver to analyze prior to the dive the oxygen content of his/her scuba cylinder and acknowledge in writing the following information for each cylinder: fO₂, MOD, cylinder pressure, date of analysis, and user's name. - b. Individual dive log reporting forms should report fO_2 of nitrox used, if different than 21%. # 7.50 Nitrox Diving Equipment All of the designated equipment and stated requirements regarding scuba equipment required in the AAUS Standards should apply to nitrox scuba operations. Additional minimal equipment necessary for nitrox diving operations includes: - Labeled SCUBA Cylinders - Oxygen Analyzers Oxygen Cleaning and Maintenance Requirements - a) Requirement for Oxygen Service - 1. All equipment, which during the dive or cylinder filling process is exposed to concentrations greater than 40% oxygen at pressures above 150 psi, should be cleaned and maintained for oxygen service. - 2. Equipment used with oxygen or mixtures containing over 40% by volume oxygen shall be designed and maintained for oxygen service. Oxygen systems over 125 psig shall have slow-opening shut-off valves. This should include the following equipment: scuba cylinders, cylinder valves, scuba and other regulators, cylinder pressure gauges, hoses, diver support equipment, compressors, and fill station components and plumbing. b) Scuba Cylinder Identification Marking Scuba cylinders to be used with nitrox mixtures should have the following identification documentation affixed to the cylinder. - 1. Cylinders should be marked "NITROX", or "EANx", or "Enriched Air". - 2. Nitrox identification color-coding should include a 4-inch wide green band around the cylinder, starting immediately below the shoulder curvature. If the cylinder is not yellow, the green band should be bordered above and below by a 1-inch yellow
band. - 3. The alternate marking of a yellow cylinder by painting the cylinder crown green and printing the word "NITROX" parallel to the length of the cylinder in green print is acceptable. - 4. Other markings, which identify the cylinder as containing gas mixes other than Air, may be used as the approval of the DCB. - 5. A contents label should be affixed, to include the current fO_2 , date of analysis, and MOD. - 6. The cylinder should be labeled to indicate whether the cylinder is prepared for oxygen or nitrox mixtures containing greater than 40% oxygen. - c) Regulators Regulators to be used with nitrox mixtures containing greater than 40% oxygen should be cleaned and maintained for oxygen service, and marked in an identifying manner. - d) Other Support Equipment - 1. An oxygen analyzer is required which is capable of determining the oxygen content in the scuba cylinder. Two analyzers are recommended to reduce the likelihood of errors due to a faulty analyzer. The analyzer should be capable of reading a scale of 0 to 100% oxygen, within 1% accuracy. - 2. All diver and support equipment should be suitable for the fO_2 being used. - e) Compressor system - 1. Compressor/filtration system must produce oil-free air. - 2. An oil-lubricated compressor placed in service for a nitrox system should be checked for oil and hydrocarbon contamination at least quarterly. - f) Fill Station Components All components of a nitrox fill station that will contact nitrox mixtures containing greater than 40% oxygen should be cleaned and maintained for oxygen service. This includes cylinders, whips, gauges, valves, and connecting lines. # **SECTION 8.00 AQUARIUM DIVING OPERATIONS** Definition – A scientific aquarium diver is a scientific diver who is diving solely within an aquarium. An aquarium is a shallow, confined body of water, which is operated by or under the control of an institution and is used for the purposes of specimen exhibit, education, husbandry, or research. Currently UF does not conduct this mode of diving. # SECTION 9.00 STAGED DECOMPRESSION DIVING Decompression diving shall be defined as any diving during which the diver cannot perform a direct return to the surface without performing a mandatory decompression stop to allow the release of inert gas from the diver's body. Currently UF does not conduct this mode of diving # **SECTION 10.00 MIXED GAS DIVING** Mixed gas diving is defined as dives done while breathing gas mixes containing proportions greater than 1% by volume of an inert gas other than nitrogen. Currently UF does not conduct this mode of diving. #### SECTION 11.00 OTHER DIVING TECHNOLOGY Certain types of diving, some of which are listed below, require equipment or procedures that require training. Supplementary guidelines for these technologies are in development by the AAUS. Organizational member's using these, must have guidelines established by their Diving Control Board. Divers shall comply with all scuba diving procedures in this standard unless specified. # 11.10 Blue Water Diving (Currently UF does not conduct this mode of diving) Blue water diving is defined as diving in open water where the bottom is generally greater than 200 feet deep. It requires special training and the use of multiple-tethered diving techniques. Specific guidelines that should be followed are outlined in "Blue Water Diving Guidelines" (California Sea Grant Publ. No. T-CSGCP-014). # 11.20 Ice And Polar Diving (Currently UF does not conduct this mode of diving) Divers planning to dive under ice or in polar conditions should use the following: "Guidelines for Conduct of Research Diving", National Science Foundation, Division of Polar Programs, 1990. #### 11.30 Overhead Environments Where an enclosed or confined space is not large enough for two divers, a diver shall be stationed at the underwater point of entry and an orientation line shall be used. ## 11.40 Saturation Diving (Currently UF does not conduct this mode of diving) If using open circuit compressed air scuba in saturation diving operations, divers shall comply with the saturation diving guidelines of the organizational member. #### 11.50 Hookah (Currently UF does not conduct this mode of diving) While similar to Surface Supplied in that the breathing gas is supplied from the surface by means of a pressurized hose, the supply hose does not require a strength member, pneumofathometer hose, or communication line. Hookah equipment may be as simple as a long hose attached to a standard scuba cylinder supplying a standard scuba second stage. The diver is responsible for the monitoring his/her own depth, time, and diving profile. # 11.60 Surface Supplied Diving (Currently UF does not conduct this mode of diving) Surface Supplied: Dives where the breathing gas is supplied from the surface by means of a pressurized umbilical hose. The umbilical generally consists of a gas supply hose, strength member, pneumofathometer hose, and communication line. The umbilical supplies a helmet or full-face mask. The diver may rely on the tender at the surface to keep up with the divers' depth, time and diving profile. # **SECTION 12.0 REBREATHERS** This section defines specific considerations regarding the following issues for the use of rebreathers: - Training and/or experience verification requirements for authorization - Equipment requirements - Operational requirements and additional safety protocols to be used Application of this standard is in addition to pertinent requirements of all other sections of the AAUS Standards for Scientific Diving, Volumes 1 and 2. For rebreather dives that also involve staged decompression and/or mixed gas diving, all requirements for each of the relevant diving modes shall be met. Diving Control Board reserves the authority to review each application of all specialized diving modes, and include any further requirements deemed necessary beyond those listed here on a case-by-case basis. No diver shall conduct planned operations using rebreathers without prior review and approval of the DCB. In all cases, trainers shall be qualified for the type of instruction to be provided. Training shall be conducted by agencies or instructors approved by DSO and DCB. #### 12.10 Definitions and General Information - a) Rebreathers are defined as any device that recycles some or all of the exhaled gas in the breathing loop and returns it to the diver. Rebreathers maintain levels of oxygen and carbon dioxide that support life by metered injection of oxygen and chemical removal of carbon dioxide. These characteristics fundamentally distinguish rebreathers from open-circuit life support systems, in that the breathing gas composition is dynamic rather than fixed. - 1. Advantages of rebreathers may include increased gas utilization efficiencies that are often independent of depth, extended no-decompression bottom times and greater decompression efficiency, and reduction or elimination of exhaust bubbles that may disturb aquatic life or sensitive environments. - 2. Disadvantages of rebreathers include high cost and, in some cases, a high degree of system complexity and reliance on instrumentation for gas composition control and monitoring, which may fail. The diver is more likely to experience hazardous levels of hypoxia, hyperoxia, or hypercapnia, due to user error or equipment malfunction, conditions which may lead to underwater blackout and drowning. Inadvertent flooding of the breathing loop and wetting of the carbon dioxide absorbent may expose the diver to ingestion of an alkaline slurry ("caustic cocktail"). - 3. An increased level of discipline and attention to rebreather system status by the diver is required for safe operation, with a greater need for self-reliance. Rebreather system design and operation varies significantly between make and model. For these reasons when evaluating any dive plan incorporating rebreathers, risk-management emphasis should be placed on the individual qualifications of the diver on the specific rebreather make and model to be used, in addition to specific equipment requirements and associated operational protocols. - b) Oxygen Rebreathers. Oxygen rebreathers recycle breathing gas, consisting of pure oxygen, replenishing the oxygen metabolized by the diver. Oxygen rebreathers are generally the least complicated design, but are normally limited to a maximum operation depth of 20fsw due to the risk of unsafe hyperoxic exposure. - c) Semi-Closed Circuit Rebreathers. Semi-closed circuit rebreathers (SCR) recycle the majority of exhaled breathing gas, venting a portion into the water and replenishing it with a constant or variable amount of a single oxygen-enriched gas mixture. Gas addition and venting is balanced against diver metabolism to maintain safe oxygen levels by means which differ between SCR models, but the mechanism usually provides a semi-constant fraction of oxygen (FO₂) in the breathing loop at all depths, similar to open-circuit SCUBA. - d) Closed-Circuit Mixed Gas Rebreathers. Closed-circuit mixed gas rebreathers (CCR) recycle all of the exhaled gas and replace metabolized oxygen via an electronically controlled valve, governed by electronic oxygen sensors. Manual oxygen addition is available as a diver override, in case of electronic system failure. A separate inert gas source (diluent), usually containing primarily air, heliox, or trimix, is used to maintain oxygen levels at safe levels when diving below 20fsw. CCR systems operate to maintain a constant oxygen partial pressure (PPO₂) during the dive, regardless of depth. #### 12.20 Prerequisites Specific training requirements for use of each rebreather model shall be defined by DCB on a case-by-case basis. Training shall include factory-recommended requirements, but may exceed this to prepare for the type of mission intended (e.g., staged decompression or heliox/trimix CCR diving). # **Training Prerequisites** - a) Active scientific diver status, with depth
qualification sufficient for the type, make, and model of rebreather, and planned application. - b) Completion of a minimum of 50 open-water dives on SCUBA. - c) For SCR or CCR, a minimum 100-fsw-depth qualification is generally recommended, to ensure the diver is sufficiently conversant with the complications of deeper diving. If the sole expected application for use of rebreathers is shallower than this, a lesser depth qualification may be allowed with the approval of the DCB. - d) Nitrox training. Training in use of nitrox mixtures containing 25% to 40% oxygen is required. Training in use of mixtures containing 40% to 100% oxygen may be required, as needed for the planned application and rebreather system. Training may be provided as part of rebreather training. # Training Successful completion of the following training program qualifies the diver for rebreather diving using the system on which the diver was trained, in depths of 130fsw and shallower, for dives that do not require decompression stops, using nitrogen/oxygen breathing media. - a) Satisfactory completion of a rebreather training program authorized or recommended by the manufacturer of the rebreather to be used, or other training approved by the DCB. Successful completion of training does not in itself authorize the diver to use rebreathers. The diver must demonstrate to the DCB or its designee that the diver possesses the proper attitude, judgment, and discipline to safely conduct rebreather diving in the context of planned operations. - b) Classroom training shall include: - 1. A review of those topics of diving physics and physiology, decompression management, and dive planning included in prior scientific diver, nitrox, staged decompression and/or mixed gas training, as they pertain to the safe operation of the selected rebreather system and planned diving application. - 2. n particular, causes, signs and symptoms, first aid, treatment and prevention of the following must be covered: - Hyperoxia (CNS and Pulmonary Oxygen Toxicity) - Middle Ear Oxygen Absorption Syndrome (oxygen ear) - Hyperoxia-induced myopia - Hypoxia - Hypercapnia - Inert gas narcosis - Decompression sickness - 3. Rebreather-specific information required for the safe and effective operation of the system to be used, including: - System design and operation, including: - Counterlung(s) - CO₂ scrubber - CO₂ absorbent material types, activity characteristics, storage, handling and disposal - Oxygen control system design, automatic and manual - Diluent control system, automatic and manual (if any) - Pre-dive set-up and testing - Post-dive break-down and maintenance - Oxygen exposure management - Decompression management and applicable decompression tracking methods - Dive operations planning - Problem recognition and management, including system failures leading to hypoxia, hyperoxia, hypercapnia, flooded loop, and caustic cocktail - Emergency protocols and bailout procedures Practical Training (with model of rebreather to be used) a) A minimum number of hours of underwater time. | Туре | Pool/Confined Water | O/W Training | O/W Supervised | |---------------------|---------------------|----------------------|------------------| | Oxygen Rebreather | 1 dive, 90 min | 4 dives, 120 min.* | 2 dives, 60 min | | Semi-Closed Circuit | 1 dive, 90-120 min | 4 dives, 120 min.** | 4 dives, 120 min | | Closed-Circuit | 1 dive, 90-120 min | 8 dives, 380 min.*** | 4 dives, 240 min | ^{*} Dives should not exceed 20 fsw. - b) Amount of required in-water time should increase proportionally to the complexity of rebreather system used. - c) Training shall be in accordance with the manufacturer's recommendations. #### **Practical Evaluations** Upon completion of practical training, the diver must demonstrate to the DCB or its designee proficiency in pre-dive, dive, and post-dive operational procedures for the particular model of rebreather to be used. Skills shall include, at a minimum: - Oxygen control system calibration and operation checks - Carbon dioxide absorbent canister packing - Supply gas cylinder analysis and pressure check - Test of one-way valves - System assembly and breathing loop leak testing - Pre-dive breathing to test system operation - In-water leak checks - Buoyancy control during descent, bottom operations, and ascent - System monitoring and control during descent, bottom operations, and ascent - Proper interpretation and operation of system instrumentation (PO2 displays, dive computers, gas supply pressure gauges, alarms, etc, as applicable) - Unit removal and replacement on the surface. - Bailout and emergency procedures for self and buddy, including: - System malfunction recognition and solution - Manual system control - Flooded breathing loop recovery (if possible) - Absorbent canister failure - Alternate bailout options - Symptom recognition and emergency procedures for hyperoxia, hypoxia, and hypercapnia - Proper system maintenance, including: - Full breathing loop disassembly and cleaning (mouthpiece, check-valves, hoses, counterlung, absorbent canister, etc.) - Oxygen sensor replacement (for SCR and CCR) - Other tasks required by specific rebreather models ^{**} First two dives should not exceed 60 fsw. Subsequent dives should be at progressively greater depths, with at least d dive in the 80 to 100 fsw range. ^{***} Total underwater time (pool and open water) of approximately 500 minutes. First two open water dives should not exceed 60 fsw. Subsequent dives should be at progressively greater depths, with at least 2 dives in the 100 to 130 fsw range. #### Written Evaluation A written evaluation approved by the DCB with a pre-determined passing score, covering concepts of both classroom and practical training, is required. #### Supervised Rebreather Dives Upon successful completion of open water training dives, the diver is authorized to conduct a series of supervised rebreather dives, during which the diver gains additional experience and proficiency. - a) Supervisor for these dives should be the DSO or designee, and should be an active scientific diver experienced in diving with the make/model of rebreather being used. - b) Dives at this level may be targeted to activities associated with the planned science diving application. See the following table for number and cumulative water time for different rebreather types. | Туре | Pool/Confined Water | O/W Training | O/W Supervised | |---------------------|---------------------|----------------------|------------------| | Oxygen Rebreather | 1 dive, 90 min | 4 dives, 120 min.* | 2 dives, 60 min | | Semi-Closed Circuit | 1 dive, 90-120 min | 4 dives, 120 min.** | 4 dives, 120 min | | Closed-Circuit | 1 dive, 90-120 min | 8 dives, 380 min.*** | 4 dives, 240 min | ^{*} Dives should not exceed 20 fsw. c) Maximum ratio of divers per designated dive supervisor is 4:1. The supervisor may dive as part of the planned operations. # Extended Range, Required Decompression and Helium-Based Inert Gas Rebreather dives involving operational depths in excess of 130 fsw, requiring staged decompression, or using diluents containing inert gases other than nitrogen are subject to additional training requirements, as determined by DCB on a case-by-case basis. Prior experience with required decompression and mixed gas diving using open-circuit SCUBA is desirable, but is not sufficient for transfer to dives using rebreathers without additional training. - a) As a prerequisite for training in staged decompression using rebreathers, the diver shall have logged a minimum of 25 hours of underwater time on the rebreather system to be used, with at least 10 rebreather dives in the 100 fsw to 130 fsw range. - b) As a prerequisite for training for use of rebreathers with gas mixtures containing inert gas other than nitrogen, the diver shall have logged a minimum of 50 hours of underwater time on the rebreather system to be used and shall have completed training in stage decompression methods using rebreathers. The diver shall have completed at least 12 dives requiring staged decompression on the rebreather model to be used, with at least 4 dives near 130 fsw. - c) Training shall be in accordance with standards for required-decompression and mixed gas diving, as applicable to rebreather systems, starting at the 130 fsw level. ^{**} First two dives should not exceed 60 fsw. Subsequent dives should be at progressively greater depths, with at least dive in the 80 to 100 fsw range. ^{***} Total underwater time (pool and open water) of approximately 500 minutes. First two open water dives should not exceed 60 fsw. Subsequent dives should be at progressively greater depths, with at least 2 dives in the 100 to 130 fsw range. # Maintenance of Proficiency - a) To maintain authorization to dive with rebreathers, an authorized diver shall make at least one dive using a rebreather every 8 weeks. For divers authorized for the conduct of extended range, stage decompression or mixed-gas diving, at least one dive per month should be made to a depth near 130 fsw, practicing decompression protocols. - b) For a diver in arrears, the DCB shall approve a program of remedial knowledge and skill tune-up training and a course of dives required to return the diver to full authorization. The extent of this program should be directly related to the complexity of the planned rebreather diving operations. # 12.30 Equipment Requirements # General Requirements - a) Only those models of rebreathers specifically approved by DCB shall be used. - b) Rebreathers should be manufactured according to acceptable Quality Control/Quality Assurance protocols, as evidenced by compliance with the essential elements of ISO 9004. Manufacturers should be able to provide to the DCB supporting documentation to this effect. - c) Unit performance specifications should be within acceptable levels as defined by standards of a recognized authority (CE, US Navy, Royal Navy, NOAA, etc...). - d) Prior to
approval, the manufacturer should supply the DCB with supporting documentation detailing the methods of specification determination by a recognized third-party testing agency, including unmanned and manned testing. Test data should be from a recognized, independent test facility. - e) The following documentation for each rebreather model to be used should be available as a set of manufacturer's specifications. These should include: - Operational depth range - Operational temperature range - Breathing gas mixtures that may be used - Maximum exercise level which can be supported as a function of breathing gas and depth - Breathing gas supply durations as a function of exercise level and depth - CO₂ absorbent durations, as a function of depth, exercise level, breathing gas, and water temperature - Method, range and precision of inspired PPO₂ control, as a function of depth, exercise level, breathing gas, and temperature - Likely failure modes and backup or redundant systems designed to protect the diver if such failures occur - Accuracy and precision of all readouts and sensors - Battery duration as a function of depth and temperature - Mean time between failures of each subsystem and method of determination. - f) A complete instruction manual is required, fully describing the operation of all rebreather components and subsystems as well as maintenance procedures. - g) A maintenance log is required. The unit maintenance shall be up-to-date based upon manufacturer's recommendations. # Minimum Equipment - a) A surface/dive valve in the mouthpiece assembly, allowing sealing of the breathing loop from the external environment when not in use. - b) An automatic gas addition valve, so that manual volumetric compensation during descent is unnecessary. - c) Manual gas addition valves, so that manual volumetric compensation during descent and manual oxygen addition at all times during the dive are possible. - d) The diver shall carry alternate life support capability (open-circuit bail-out or redundant rebreather) sufficient to allow the solution of minor problems and allow reliable access to a pre-planned alternate life support system. # Oxygen Rebreathers Oxygen rebreathers shall be equipped with manual and automatic gas addition valves. #### Semi-Closed Circuit Rebreathers. SCR's shall be equipped with at least one manufacturer-approved oxygen sensor sufficient to warn the diver of impending hypoxia. Sensor redundancy is desirable, but not required. # Closed Circuit Mixed-gas Rebreathers. - a) CCR shall incorporate a minimum of three independent oxygen sensors. - b) A minimum of two independent displays of oxygen sensor readings shall be available to the diver. - c) Two independent power supplies in the rebreather design are desirable. If only one is present, a secondary system to monitor oxygen levels without power from the primary battery must be incorporated. - d) CCR shall be equipped with manual diluent and oxygen addition valves, to enable the diver to maintain safe oxygen levels in the event of failure of the primary power supply or automatic gas addition systems. - e) Redundancies in onboard electronics, power supplies, and life support systems are highly desirable. # 12.40 Operational Requirements #### General Requirements - a) All dives involving rebreathers must comply with applicable operational requirements for open-circuit SCUBA dives to equivalent depths. - b) No rebreather system should be used in situations beyond the manufacturer's stated design limits (dive depth, duration, water temperature, etc). - c) Modifications to rebreather systems shall be in compliance with manufacturer's recommendations. - d) Rebreather maintenance is to be in compliance with manufacturer's recommendations including sanitizing, replacement of consumables (sensors, CO₂ absorbent, gas, batteries, etc) and periodic maintenance. - e) Dive Plan. In addition to standard dive plan components stipulated in AAUS Section 2.0, all dive plans that include the use of rebreathers must include, at minimum, the following details: - Information about the specific rebreather model to be used - Make, model, and type of rebreather system - Type of CO₂ absorbent material - Composition and volume(s) of supply gases - Complete description of alternate bailout procedures to be employed, including manual rebreather operation and open-circuit procedures - Other specific details as requested by DCB #### Buddy Qualifications. - a) A diver whose buddy is diving with a rebreather shall be trained in basic rebreather operation, hazard identification, and assist/rescue procedures for a rebreather diver. - b) If the buddy of a rebreather diver is using open-circuit scuba, the rebreather diver must be equipped with a means to provide the open-circuit scuba diver with a sufficient supply of open-circuit breathing gas to allow both divers to return safely to the surface. #### Oxygen Exposures - a) Planned oxygen partial pressure in the breathing gas shall not exceed 1.4 atmospheres at depths greater than 30 feet. - b) Planned oxygen partial pressure set point for CCR shall not exceed 1.4 atm. Set point at depth should be reduced to manage oxygen toxicity according to the NOAA Oxygen Exposure Limits. - c) Oxygen exposures should not exceed the NOAA oxygen single and daily exposure limits. Both CNS and pulmonary (whole-body) oxygen exposure indices should be tracked for each diver. ## **Decompression Management** - a) DCB shall review and approve the method of decompression management selected for a given diving application and project. - b) Decompression management can be safely achieved by a variety of methods, depending on the type and model of rebreather to be used. Following is a general list of methods for different rebreather types: - 1. Oxygen rebreathers: Not applicable. - 2. SCR (presumed constant FO_2): - Use of any method approved for open-circuit scuba diving breathing air, above the maximum operational depth of the supply gas. - Use of open-circuit nitrox dive tables based upon expected inspired FO₂. In this case, contingency air dive tables may be necessary for active-addition SCR's in the event that exertion level is higher than expected. - Equivalent air depth correction to open-circuit air dive tables, based upon expected inspired FO₂ for planned exertion level, gas supply rate, and gas composition. In this case, contingency air dive tables may be necessary for active-addition SCR's in the event that exertion level is higher than expected. - 3. CCR (constant PPO_2): - Integrated constant PPO₂ dive computer. - Non-integrated constant PPO₂ dive computer. - Constant PPO₂ dive tables. - Open-circuit (constant FO₂) nitrox dive computer, set to inspired FO₂ predicted using PPO₂ set point at the maximum planned dive depth. - Equivalent air depth (EAD) correction to standard open-circuit air dive tables, based on the inspired FO₂ predicted using the PPO₂ set point at the maximum planned dive depth. - Air dive computer, or air dive tables used above the maximum operating depth (MOD) of air for the PPO₂ setpoint selected. Maintenance Logs, CO2 Scrubber Logs, Battery Logs, and Pre-And Post-Dive Checklists Logs and checklists will be developed for the rebreather used, and will be used before and after every dive. Diver shall indicate by initialing that checklists have been completed before and after each dive. Such documents shall be filed and maintained as permanent project records. No rebreather shall be dived which has failed any portion of the pre-dive check, or is found to not be operating in accordance with manufacturer's specifications. Pre-dive checks shall include: - Gas supply cylinders full - Composition of all supply and bail-out gases analyzed and documented - Oxygen sensors calibrated - Carbon dioxide canister properly packed - Remaining duration of canister life verified - Breathing loop assembled - Positive and negative pressure leak checks - Automatic volume addition system working - Automatic oxygen addition systems working - Pre-breathe system for 3 minutes (5 minutes in cold water) to ensure proper oxygen addition and carbon dioxide removal (be alert for signs of hypoxia or hypercapnia) - Other procedures specific to the model of rebreather used - Documentation of ALL components assembled - Complete pre-dive system check performed - Final operational verification immediately before to entering the water: - PO₂ in the rebreather is not hypoxic - Oxygen addition system is functioning; - Volumetric addition is functioning - Bail-out life support is functioning # Alternate Life Support System The diver shall have reliable access to an alternate life support system designed to safely return the diver to the surface at normal ascent rates, including any required decompression in the event of primary rebreather failure. The complexity and extent of such systems are directly related to the depth/time profiles of the mission. Examples of such systems include, but are not limited to: - g) Open-circuit bailout cylinders or sets of cylinders, either carried or pre-positioned - h) Redundant rebreather - i) Pre-positioned life support equipment with topside support #### CO₂ Absorbent Material - a) CO₂ absorption canister shall be filled in accordance with the manufacturer's specifications. - b) CO₂ absorbent material shall be used in accordance with the manufacturer's specifications for expected duration. - c) If CO₂ absorbent canister is not exhausted and storage between dives is planned, the canister should be removed from the unit and stored sealed and protected from ambient air, to ensure the absorbent retains its activity for subsequent dives. - d) Long-term storage of carbon dioxide absorbents shall be in a cool, dry location in a sealed container. Field storage must be adequate to maintain viability of material until use. Consumables (e.g., batteries, oxygen sensors, etc.) Other consumables (e.g., batteries, oxygen sensors, etc.)
shall be maintained, tested, and replaced in accordance with the manufacturer's specifications. #### **Unit Disinfections** The entire breathing loop, including mouthpiece, hoses, counterlungs, and CO2 canister, should be disinfected periodically according to manufacturer's specifications. The loop must be disinfected between each use of the same rebreather by different divers. # 12.50 Oxygen Rebreathers - a) Oxygen rebreathers shall not be used at depths greater than 20 feet. - b) Breathing loop and diver's lungs must be adequately flushed with pure oxygen prior to entering the water on each dive. Once done, the diver must breathe continuously and solely from the intact loop, or re-flushing is required. - c) Breathing loop shall be flushed with fresh oxygen prior to ascending to avoid hypoxia due to inert gas in the loop. #### 12.60 Semi-Closed Circuit Rebreathers - a) The composition of the injection gas supply of a semi-closed rebreather shall be chosen such that the partial pressure of oxygen in the breathing loop will not drop below 0.2 atm, even at maximum exertion at the surface. - b) The gas addition rate of active addition SCR (e.g., Draeger Dolphin and similar units) shall be checked before every dive, to ensure it is balanced against expected workload and supply gas FO₂. - c) The intermediate pressure of supply gas delivery in active-addition SCR shall be checked periodically, in compliance with manufacturer's recommendations. - d) Maximum operating depth shall be based upon the FO_2 in the active supply cylinder. - e) Prior to ascent to the surface the diver shall flush the breathing loop with fresh gas or switch to an open-circuit system to avoid hypoxia. The flush should be at a depth of approximately 30 fsw during ascent on dives deeper than 30 fsw, and at bottom depth on dives 30 fsw and shallower. ## 12.70 Closed-Circuit Rebreathers - a) The FO_2 of each diluent gas supply used shall be chosen so that, if breathed directly while in the depth range for which its use is intended, it will produce an inspired PPO_2 greater than 0.20 atm but no greater than 1.4 atm. - b) Maximum operating depth shall be based on the FO₂ of the diluent in use during each phase of the dive, so as not to exceed a PO₂ limit of 1.4 atm. - c) Divers shall monitor both primary and secondary oxygen display systems at regular intervals throughout the dive, to verify that readings are within limits, that redundant displays are providing similar values, and whether readings are dynamic or static (as an indicator of sensor failure). - d) The PPO₂ set point shall not be lower than 0.4 atm or higher than 1.4 atm. #### SECTION 13.00 SCIENTIFIC CAVE AND CAVERN DIVING STANDARD This standard helps to ensure all scientific diving in overhead environments is conducted in a manner which will maximize the protection of scientific divers from accidental injury and/or illness and provide the basis allowing the working reciprocity between AAUS organizational members. If a conflict exists between this standard and other standards in this manual, the information set forth in this standard only takes precedence when the scientific diving being conducted takes place wholly or partly within an underwater cave or cavern environment. A dive team shall be considered to be cave or cavern diving if at any time during the dive they find themselves in a position where they cannot complete a direct, unobstructed ascent to the surface because of rock formations. The member organization requires that no person shall engage in scientific cave or cavern diving unless that person holds a recognized certificate/authorization issued pursuant to the provisions of this manual. The diver must demonstrate to the DCB or it's designee that the diver possesses the proper attitude, judgment, and discipline to safety conduct cave and cavern diving in the context of planned operations. Operational requirements for cave and cavern diving have been established through accident analysis of previous cave diving accidents. ## 13.10 Definitions Alternate Gas Supply - Fully redundant system capable of providing a gas source to the diver should their primary gas supply fail. Bubble Check - Visual examination by the dive team of their diving systems, looking for o-ring leaks or other air leaks conducted in the water prior to entering a cave. Usually included in the "S" Drill. Cave – A dive shall be considered a cave dive if any one or more of the environmental limits specified in the definition of cavern are exceeded or otherwise not followed. Linear penetrations limits shall not exceed the limits of each diver's training. Cave Dive - A dive, which takes place partially or wholly underground, in which one or more of the environmental parameters defining a cavern dive are exceeded. Cavern - An entrance and first chamber to a cave where: - 1. Sunlight from the entrance is visible to all dive team members at all times during the dive. - 2. Members of the dive team do not pass through any restrictions that don't allow the divers to swim side by side during the dive, nor are there any restrictions between the divers and the most expeditious exit to the surface. - 3. Maximum depth achieved shall not exceed the depth ratings of dive team. Cavern Dive - A dive which takes place partially or wholly underground, in which the following environmental parameters are met: - 1. Natural sunlight is continuously visible from the entrance. - 2. Environmental conditions will be evaluated by the DSO or designee and appropriate limits incorporated into the dive plan. Dual Valve Manifold with Isolator Valve - A manifold joining two diving cylinders, that allows the use of two completely independent regulators. If either regulator fails, it may be shut off, allowing the remaining regulator access to the gas in both of the diving cylinders. Gas Management - Gas planning rule which is used in cave diving environments in which the diver reserves a portion of their available breathing gas for anticipated emergencies (See Rule of Thirds, Sixths). Guideline - Continuous line used as a navigational reference during a dive leading from the team position to a point where a direct vertical ascent may be made to the surface. Jump/Gap Reel -Spool or reel used to connect one guide line to another thus ensuring a continuous line to the exit. Knife/Line Cutter - Small, sharp blade capable of easily cutting a guideline and that is accessible to the diver. Lava Tube - Type of cave or cavern formed by the surface hardening of a stream of flowing molten rock, which may later become flooded due to static sea level changes. Line Marker - Any one of several types of markers attached to a guideline, which provides additional navigational information to the dive team, most commonly the direction out to the nearest surface. Mine Diving - Diving in the flooded portions of a man-made mine. Necessitates use of techniques detailed for cave diving. Penetration Distance - Linear distance from the entrance intended or reached by a dive team during a dive at a dive site. Primary Reel - Initial guideline used by the dive team from open water to maximum penetration or a permanently installed guideline. Restriction - Any passage through which two divers cannot easily pass side by side while sharing air. Rule of Thirds - Gas planning rule which is used in cave diving environments in which the diver reserves 2/3's of their breathing gas supply for exiting the cave or cavern. Rule of Sixths - Air planning rule which is used in cave or other confined diving environments in which the diver reserves 5/6's of their breathing gas supply (for DPV use, siphon diving, etc.) for exiting the cave or cavern. Safety Drill - ("S" Drill) - Short gas sharing, equipment evaluation, dive plan, and communication exercise carried out prior to entering a cave or cavern dive by the dive team. Safety Reel - Secondary reel used as a backup to the primary reel, usually containing 150 feet of guideline that is used in an emergency. Scientific Cave or Cavern Diver In Training - Authorized to dive in the cave or cavern environment under the direct supervision of qualified instructional personnel for training purposes only. Scientific Cavern Diver - Authorization to dive in an overhead environment as defined in cavern. Scientific Cave Diver - Authorization to dive in an overhead environment as defined in cave. Sidemount Diving - A diving mode utilizing two independent SCUBA systems carried along the sides of the diver's body; either of which always has sufficient air to allow the diver to reach the surface unassisted. Siphon - Cave into which water flows with a generally continuous in-current. Solution Cave - Cave formed in carbonate or carbonate-cemented bedrock, formed by the dissolution of the rock by groundwater. Spring - Cave with water flowing with a generally continuous outflow. Sump - An area in a dry cave that can no longer be negotiated without the use of diving equipment. Well - A vertical or nearly vertical shaft, usually manmade, through which a diver can access a dive site. #### 13.20 Cave and Cavern Environment Hazards **Current/Flow -** Underwater caves have currents that vary in strength and direction. Of particular note is a condition known as siphoning. Siphoning caves have flow or current directed into the cave. This can cause poor visibility as a result of mud and silt being drawn into the cave entrance. **Silt** - The presences of silt, sand, mud, clay, etc. on the cave floor can cause visibility to be reduced to nothing in a very short time. **Restrictions -** Any passage through which two divers cannot easily pass side by side while sharing air make air sharing difficult. **Cave-ins -** Cave-ins are a normal part of cave evolution; however experiencing a cave-in during diving operations is extremely unlikely. #### 13.30 Minimum Experience and Training Requirements # a) Cavern Diver #### 1. Prerequisites The applicant for training
shall have met the requirements in Section 5.00 of the AAUS *Standards for Scientific Diving Certification and Operation of Scientific Diving Programs*, fourth edition (2003), and hold as a minimum a scientific diver permit. # 2. Cavern Training The applicant is to participate in the following areas of training, or their equivalent: - Classroom Lecture and Critique—The applicant shall participate in classroom discussion or equivalent type activities covering these topics: Policy for cavern diving, cavern environment and environmental hazards, accident analysis, psychological considerations, equipment, body control, communications, cavern diving techniques, navigation and guidelines, dive planning, cave geology, cave hydrology, cave biology, and emergency procedures. - Land Drills—The applicant shall participate in drills above water using the guideline and reel. Drills are to emphasize proper use of the reel, techniques and considerations for laying a guideline, guideline following, buddy communication, and emergency procedures. - Cavern Dives—A minimum of four (4) cavern dives, preferably to be conducted in a minimum of two (2) different caverns. Skills the applicant should demonstrate include: Safety drill (S-drill), gear matching, bubble check prior to entering the cavern on each dive, proper buoyancy compensator use, proper trim and body positioning, hovering and buoyancy with hand tasks, specialized propulsion techniques (modified flutter kick, modified frog kick, pull and glide, ceiling walk or shuffle), proper guideline and reel use, ability to follow the guideline with no visibility, sharing air while following a guideline, and sharing air while following the guideline with no visibility light and hand signal use, and ability to comfortably work in a cavern without assistance. - Written Examination A written evaluation approved by the DCB with a predetermined passing score, covering concepts of both classroom and practical training is required. #### b) Cave Diver 1. Prerequisites The applicant for training shall hold as a minimum a cavern diver permit. 2. Cave Training The applicant is to participate in the following areas of training, or their equivalent: Classroom Lecture and Critique—The applicant shall participate in classroom discussion or equivalent type activities covering these topics: Review of the topics listed in cavern diver training and differing techniques and procedures used in cave diving, additional equipment procedures used in cave diving, cave diving equipment configurations, procedures for conducting diving operations involving complex navigation and use of line markers, advanced gas management and a thorough review of dive tables, decompression tables, and decompression theory. - Land Drills—The applicant shall participate in drills above water included in cavern training. Drills are to emphasize proper use of the reel in lost diver procedures, as well as line placements and station location as required for surveying. - Cave Dives—A minimum of twelve (12) cave dives, to be conducted in a minimum of four (4) different cave sites with differing conditions recommended. Skills the applicant should demonstrate include: Review of skills listed in cavern training, and special techniques in buoyancy control, referencing and back-up navigation, air sharing in a minor restriction using a single file method, special propulsion techniques in heavy outflow, anti-silting techniques, line jumping techniques and protocols, surveying, and ability to critique their dives. Emergency procedures training shall include proficiency in lost line, lost diver, gas sharing, light failure, valve manipulation, and no/low visibility situations. - Written Examination A written evaluation approved by the DCB with a predetermined passing score, covering concepts of both classroom and practical training is required. # **13.40 Equipment Requirements** Equipment used for SCUBA in cave or cavern diving is based on the concept of redundancy. Redundant SCUBA equipment shall be carried whenever the planned penetration distances are such that an emergency swimming ascent is not theoretically possible. # a) Cavern Diving Equipment The following equipment shall be required, in excess of that detailed for open water SCUBA diving in Volume 1, Section 3.00. Each member of the dive team shall have: - At minimum, a single tank equipped with an "H" valve or an alternate air supply. - A BCD capable of being inflated from the tank. - Slate and pencil. - Two battery powered secondary lights of an approved type. - Knife or line cutter. - One primary reel of at least 350 feet for each team. - Snorkel—No snorkel shall be worn while inside underwater cave or cavern. # b) Cave Diving Equipment The following equipment shall be required, in excess of that detailed for cavern diving: Each member of the dive team shall have: - Cylinders with dual orifice isolation valve manifold or independent SCUBA systems each capable of maintaining enough gas for the diver during exit and ascent to the surface. - Two completely independent regulators, at least one of each having submersible tank pressure gauge, a five foot or longer second stage hose, low pressure inflator for the BCD. - A primary light with sufficient burn time for the planned dive. - Safety reel with at least 150 feet of line. - Appropriate submersible dive tables and/or dive computer (computers w/ backup tables). - Line markers. - Snorkel—No snorkel shall be worn while inside underwater cave or cavern. # 13.50 Operational Requirements and Safety Protocols All members of the dive team must have met the applicable all sections of Volume One and applicable sections of Volume Two of the AAUS manual and be authorized for that type of diving by the DCB before conducting scientific cave dives. ## a) Cavern Diver Procedures - Cavern diving shall not be conducted at depths greater than 100 feet. - Dive teams shall perform a safety drill prior to each cave or cavern penetration that includes equipment check, gas management, and dive objectives. - Each team within the cavern zone must utilize a continuous guideline appropriate for the environment leading to a point from which an uninterrupted ascent to the surface may be made. - Gas management must be appropriate for the planned dive with special considerations made for; DPV's, siphon diving, rebreathers, etc. - The entire dive team is to immediately terminate the dive whenever any dive team member feels an unsafe condition is present. # b) Cave Diving Procedures - Dive teams shall perform a safety drill prior to each cave or cavern penetration that includes equipment check, gas management, and dive objectives. - Diver teams must run or follow a continuous guideline from the surface pool to maximum penetration. - Gas management must be appropriate for the planned dive with special considerations made for: DPV's, siphon diving, rebreathers, etc. - Each diver must carry one primary and two back up lights. - Divers utilizing side mount diving or other dual independent diving systems must have the approval of the Diving Safety Officer or his/her designee. - The entire dive team is to immediately terminate the dive whenever any dive team member feels an unsafe condition is present. # **Appendices** Appendix 1 through 9 Required For All Organizational Members # APPENDIX 1 DIVING MEDICAL EXAM OVERVIEW FOR THE EXAMINING PHYSICIAN #### TO THE EXAMINING PHYSICIAN: This person, <u>Stephanie Buhler</u>, requires a medical examination to assess their fitness for certification as a Scientific Diver for the <u>University</u> of Florida. Their answers on the Diving Medical History Form (attached) may indicate potential health or safety risks as noted. Your evaluation is requested on the attached scuba Diving Fitness Medical Evaluation Report. If you have questions about diving medicine, you may wish to consult one of the references on the attached list or contact one of the physicians with expertise in diving medicine whose names and phone numbers appear on an attached list, the Undersea Hyperbaric and Medical Society, or the Divers Alert Network. Please contact the undersigned Diving Safety Officer if you have any questions or concerns about diving medicine or the University of Florida standards. Thank you for your assistance. | Cheryl Thacker | February 1, 2012 | |-----------------------|------------------| | Diving Safety Officer | Date | | Cheryl Thacker | 352-392-1661 | | Printed Name | Phone Number | Scuba and other modes of compressed-gas diving can be strenuous and hazardous. A special risk is present if the middle ear, sinuses, or lung segments do not readily equalize air pressure changes. The most common cause of distress is eustachian insufficiency. Recent deaths in the scientific diving community have been attributed to cardiovascular disease. Please consult the following list of conditions that usually restrict candidates from diving. (Adapted from Bove, 1998: bracketed numbers are pages in Bove) #### CONDITIONS WHICH MAY DISQUALIFY CANDIDATES FROM DIVING - 1. Abnormalities of the tympanic membrane, such as perforation, presence of a monomeric membrane, or inability to autoinflate the middle ears. [5,7,8,9] - 2. Vertigo, including Meniere's Disease. [13] - 3. Stapedectomy or middle ear reconstructive surgery. [11] - 4. Recent ocular surgery. [15, 18, 19] - 5. Psychiatric disorders including claustrophobia, suicidal ideation, psychosis, anxiety states, untreated depression. [20 23] - 6. Substance abuse, including alcohol. [24 25] - 7. Episodic loss of consciousness. [1, 26, 27] - 8. History of seizure. [27, 28] - 9. History of stroke or a fixed neurological deficit. [29, 30] - 10. Recurring neurologic disorders, including transient ischemic attacks. [29, 30] - 11. History of intracranial aneurysm, other vascular malformation or intracranial hemorrhage. [31] - 12. History of neurological decompression illness with residual deficit. [29, 30] - 13.
Head injury with sequelae. [26, 27] - 14. Hematologic disorders including coagulopathies. [41, 42] - 15. Evidence of coronary artery disease or high risk for coronary artery disease. [33 35] - 16. Atrial septal defects. [39] - 17. Significant valvular heart disease isolated mitral valve prolapse is not disqualifying. [38] - 18. Significant cardiac rhythm or conduction abnormalities. [36 37] - 19. Implanted cardiac pacemakers and cardiac defibrillators (ICD). [39, 40] - 20. Inadequate exercise tolerance. [34] - 21. Severe hypertension. [35] - 22. History of spontaneous or traumatic pneumothorax. [45] - 23. Asthma. [42 44] - 24. Chronic pulmonary disease, including radiographic evidence of pulmonary blebs, bullae, or cysts. [45,46] - 25. Diabetes mellitus. [46 47] - 26. Pregnancy. [56] #### SELECTED REFERENCES IN DIVING MEDICINE Available from Best Publishing Company, P.O. Box 30100, Flagstaff, AZ 86003-0100, the Divers Alert Network (DAN) or the Undersea and Hyperbaric Medical Society (UHMS), Durham, NC - Elliott, D.H. ed. 1996. *Are Asthmatics Fit to Dive?* Kensington, MD: Undersea and Hyperbaric Medical Society. - Bove, A.A. 2011. The cardiovascular system and diving risk. *Undersea and Hyperbaric Medicine* 38(4): 261-269. - Thompson, P.D. 2011. The cardiovascular risks of diving. *Undersea and Hyperbaric Medicine* 38(4): 271-277. - Douglas, P.S. 2011. Cardiovascular screening in asymptomatic adults: Lessons for the diving world. *Undersea and Hyperbaric Medicine* 38(4): 279-287. - Mitchell, S.J., and A.A. Bove. 2011. Medical screening of recreational divers for cardiovascular disease: Consensus discussion at the Divers Alert Network Fatality Workshop. *Undersea and Hyperbaric Medicine* 38(4): 289-296. - Grundy, S.M., Pasternak, R., Greenland, P., Smith, S., and Fuster, V. 1999. Assessment of Cardiovascular Risk by Use of Multiple-Risk-Factor Assessment Equations. AHA/ACC Scientific Statement. *Journal of the American College of Cardiology*, 34: 1348-1359. http://content.onlinejacc.org/cgi/content/short/34/4/1348 - Bove, A.A. and Davis, J. 2003. DIVING MEDICINE, Fourth Edition. Philadelphia: W.B. Saunders Company. - Edmonds, C., Lowry, C., Pennefather, J. and Walker, R. 2002. DIVING AND SUBAQUATIC MEDICINE, Fourth Edition. London: Hodder Arnold Publishers. - Bove, A.A. ed. 1998. MEDICAL EXAMINATION OF SPORT SCUBA DIVERS, San Antonio, TX: Medical Seminars, Inc. - NOAA DIVING MANUAL, NOAA. Superintendent of Documents. Washington, DC: U.S. Government Printing Office. - U.S. NAVY DIVING MANUAL. Superintendent of Documents, Washington, DC: U.S. Government Printing Office, Washington, D.C. # APPENDIX 2 MEDICAL EVALUATION OF FITNESS FOR SCUBA DIVING REPORT | Name of Applicant (Print or Ty Hearing loss; pe) | Date (Mo/Day/Year) | |---|---| | To The Examining Physician: Scientific divers require periodic scubar engage in diving with self-contained underwater breathing apparatus (Form may indicate potential health or safety risks as noted. Scuba individual in several ways. Your evaluation is requested on this Medical fitness is requested. Scuba diving requires heavy exertion. The disease (see references, following page). An absolute requirement is equalize pressure. Any condition that risks the loss of consciousness accordance with the AAUS Medical Standards (Sec. 6.00). If you have the Undersea Hyperbaric Medical Society or Divers Alert Network. TESTS: THE FOLLOWING TESTS ARE REQUIRED: DURING ALL INITIAL AND PERIODIC RE-EXAMS (UNDER Medical history) | scuba). Their answers on the Diving Medical History diving is an activity that puts unusual stress on the cal Evaluation form. Your opinion on the applicant's e diver must be free of cardiovascular and respiratory the ability of the lungs, middle ears and sinuses to s should disqualify the applicant. Please proceed in equestions about diving medicine, please consult with | | • Complete physical exam, with emphasis on neurological and | otological components | | Urinalysis A multiplication to the decrease and a second to the planting of | | | Any further tests deemed necessary by the physician ADDITIONAL TESTS DURING FIRST EXAM OVER AGE 40 A | AND PERIODIC RE-EXAMS (OVER | | AGE 40): | | | • Chest x-ray (Required only during first exam over age 40) | | | Resting EKG | | | Assessment of coronary artery disease using Multiple-Risk-F (200 limit and file bland arranged dish tip arranged arranged arranged dish tip arranged arranged arranged dish tip arranged arranged dish tip arranged arranged dish tip d | | | (age, lipid profile, blood pressure, diabetic screening, smokin
Note: Exercise stress testing may be indicated based on Multi | | | PHYSICIAN'S STATEMENT: | pie-Risk-Factor Assessment | | | 2 years (over age 60) | | | 3 years (age 40-59) | | | 5 years (under age 40) | | 02 Diver IS NOT medically qualified to dive: | Permanently Temporarily. | | I have evaluated the abovementioned individual according to the A standards and required tests for scientific diving (Sec. 6.00 and Appending that may be disqualifying for participation in scuba diving. I have diswould not disqualify him/her from diving but which may seriously conthe nature of the hazards and the risks involved in diving with these contributions. | dix 1) and, in my opinion, find no medical conditions accussed with the patient any medical condition(s) that appromise subsequent health. The patient understands | | MD or DO | | | Signature | | | *************************************** | | | ••••• | | | | | | ••••••••••••••••••••••••••••••••••••••• | Date | | Name (Print or Type) | | | Address | | | Telephone Number E-Mail Address | | | My familiarity with applicant is: This exam only Re | egular physician for vears | Revised 2/1/12 Page 61 My familiarity with diving medicine is: # APPENDIX 2b AAUS MEDICAL EVALUATION OF FITNESS FOR SCUBA DIVING REPORT #### APPLICANT'S RELEASE OF MEDICAL INFORMATION FORM | Name of Applicant (Print or Type) | | | | |---|--|----------------------------------|-------------------| | I authorize the release of this informa | ation and all medical information subseq | uently acquired in association v | with my diving to | | the | Diving Safety Officer and | Diving Control Board or their | designee at | | (place) | on (date) | | | | Signature of Applicant | | Date | | # **REFERENCES** ¹Grundy, S.M., Pasternak, R., Greenland, P., Smith, S., and Fuster, V. 1999. Assessment of Cardiovascular Risk by Use of Multiple-Risk-Factor Assessment Equations. AHA/ACC Scientific Statement. *Journal of the American College of Cardiology*, 34: 1348-1359. http://content.onlinejacc.org/cgi/content/short/34/4/1348 # APPENDIX 3 DIVING MEDICAL HISTORY FORM (To Be Completed By Applicant-Diver) | Name | | _ Sex | Age | _ Wt | _ Ht | |---------|--------------------------------------|-------|------|------|------| | Sponsor | | | Date | / / | | | • | (Dept./Project/Program/School, etc.) | | (N | | r) | #### TO THE APPLICANT: Scuba diving places considerable physical and mental demands on the diver. Certain medical and physical requirements must be met before beginning a diving or training program. Your accurate answers to the questions are more important, in many instances, in determining your fitness to dive than what the physician may see, hear or feel as part of the diving medical certification procedure. This form shall be kept confidential by the
examining physician. If you believe any question amounts to invasion of your privacy, you may elect to omit an answer, provided that you shall subsequently discuss that matter with your own physician who must then indicate, in writing, that you have done so and that no health hazard exists. Should your answers indicate a condition, which might make diving hazardous, you will be asked to review the matter with your physician. In such instances, their written authorization will be required in order for further consideration to be given to your application. If your physician concludes that diving would involve undue risk for you, remember that they are concerned only with your well-being and safety. | | Yes | No | Please indicate whether or not the following apply to you | Comments | |----|-----|----|---|----------| | 1 | | | Convulsions, seizures, or epilepsy | | | 2 | | | Fainting spells or dizziness | | | 3 | | | Been addicted to drugs | | | 4 | | | Diabetes | | | 5 | | | Motion sickness or sea/air sickness | | | 6 | | | Claustrophobia | | | 7 | | | Mental disorder or nervous breakdown | | | 8 | | | Are you pregnant? | | | 9 | | | Do you suffer from menstrual problems? | | | 10 | | | Anxiety spells or hyperventilation | | | 11 | | | Frequent sour stomachs, nervous stomachs or vomiting spells | | | 12 | | | Had a major operation | | | 13 | | | Presently being treated by a physician | | | 14 | | | Taking any medication regularly (even non-prescription) | | | 15 | | | Been rejected or restricted from sports | | | 16 | | | Headaches (frequent and severe) | | | 17 | | | Wear dental plates | | | | Yes | No | Please indicate whether or not the following apply to you | Comments | |----|-----|----|---|----------| | 18 | | | Wear glasses or contact lenses | | | 19 | | | Bleeding disorders | | | 20 | | | Alcoholism | | | 21 | | | Any problems related to diving | | | 22 | | | Nervous tension or emotional problems | | | 23 | | | Take tranquilizers | | | 24 | | | Perforated ear drums | | | 25 | | | Hay fever | | | 26 | | | Frequent sinus trouble, frequent drainage from the nose, postnasal drip, or stuffy nose | | | 27 | | | Frequent earaches | | | 28 | | | Drainage from the ears | | | 29 | | | Difficulty with your ears in airplanes or on mountains | | | 30 | | | Ear surgery | | | 31 | | | Ringing in your ears | | | 32 | | | Frequent dizzy spells | | | 33 | | | Hearing problems | | | 34 | | | Trouble equalizing pressure in your ears | | | 35 | | | Asthma | | | 36 | | | Wheezing attacks | | | 37 | | | Cough (chronic or recurrent) | | | 38 | | | Frequently raise sputum | | | 39 | | | Pleurisy | | | 40 | | | Collapsed lung (pneumothorax) | | | 41 | | | Lung cysts | | | 42 | | | Pneumonia | | | 43 | | | Tuberculosis | | | | Yes | No | Please indicate whether or not the following apply to you | Comments | |----|-----|----|---|----------| | 44 | | | Shortness of breath | | | 45 | | | Lung problem or abnormality | | | 46 | | | Spit blood | | | 47 | | | Breathing difficulty after eating particular foods, after exposure to particular pollens or animals | | | 48 | | | Are you subject to bronchitis | | | 49 | | | Subcutaneous emphysema (air under the skin) | | | 50 | | | Air embolism after diving | | | 51 | | | Decompression sickness | | | 52 | | | Rheumatic fever | | | 53 | | | Scarlet fever | | | 54 | | | Heart murmur | | | 55 | | | Large heart | | | 56 | | | High blood pressure | | | 57 | | | Angina (heart pains or pressure in the chest) | | | 58 | | | Heart attack | | | 59 | | | Low blood pressure | | | 60 | | | Recurrent or persistent swelling of the legs | | | 61 | | | Pounding, rapid heartbeat or palpitations | | | 62 | | | Easily fatigued or short of breath | | | 63 | | | Abnormal EKG | | | 64 | | | Joint problems, dislocations or arthritis | | | 65 | | | Back trouble or back injuries | | | 66 | | | Ruptured or slipped disk | | | 67 | | | Limiting physical handicaps | | | 68 | | | Muscle cramps | | | 69 | | | Varicose veins | | | Amputations Head injury causing unconsciousness Paralysis Have you ever had an adverse reaction to medication? Do you smoke? Have you ever had any other medical problems not listed? If so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? Vaccination dates? | | Comment | |---|---|---------| | Paralysis Have you ever had an adverse reaction to medication? Do you smoke? Have you ever had any other medical problems not listed? If so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | 70 Amputations | | | Have you ever had an adverse reaction to medication? Do you smoke? Have you ever had any other medical problems not listed? If so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | Head injury causing unconsciousness | | | Do you smoke? Have you ever had any other medical problems not listed? If so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | 72 Paralysis | | | Have you ever had any other medical problems not listed? If so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | Have you ever had an adverse reaction to medication? | | | so, please list or describe below; Is there a family history of high cholesterol? Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | Do you smoke? | | | Is there a family history of heart disease or stroke? Is there a family history of diabetes? Is there a family history of asthma? Date of last tetanus shot? | | | | 78 Is there a family history of diabetes? 79 Is there a family history of asthma? 80 Date of last tetanus shot? | Is there a family history of high cholesterol? | | | 79 Is there a family history of asthma? 80 Date of last tetanus shot? | Is there a family history of heart disease or stroke? | | | 80 Date of last tetanus shot? | Is there a family history of diabetes? | | | XII | Is there a family history of asthma? | | | | | | | Please explain any "yes" answers to the above questions. | Vaccination dates? | | I certify that the above answers and information represent an accurate and complete description of my Date medical history. Signature # APPENDIX 4 RECOMMENDED PHYSICIANS WITH EXPERTISE IN DIVING MEDICINE List of local Medical Doctors that have training and expertise in diving or undersea medicine. Level I graduates of the Undersea Hyperbaric and Medical Society (UHMS) Fitness to Dive courses (approximately 250 physicians) are listed at http://membership.uhms.org/?page=DivingMedical (UHMS website, go to Resources, go to Library, go to Diving Medical Examiners) | 1. | Name: | |----|------------| | | Address: | | | | | | Telephone: | | 2 | | | ۷. | Name: | | | Address: | | | Telephone: | | | | | 3. | Name: | | | Address: | | | Telephone: | | 4. | Name: | | • | Address: | | | | | | Telephone: | | _ | | | Э. | Name: | | | Address: | | | Telephone: | # APPENDIX 5 DEFINITION OF TERMS Air sharing - Sharing of an air supply between divers. ATA(s) - "Atmospheres Absolute", Total pressure exerted on an object, by a gas or mixture of gases, at a specific depth or elevation, including normal atmospheric pressure. Breath-hold Diving - A diving mode in which the diver uses no self-contained or surface-supplied air or oxygen supply. Buddy Breathing - Sharing of a single air source between divers. Buddy Diver - Second member of the dive team. Buddy System -Two comparably equipped scuba divers in the water in constant communication. Buoyant Ascent - An ascent made using some form of positive buoyancy. Burst Pressure - Pressure at which a pressure containment device would fail structurally. Certified Diver - A diver who holds a recognized valid certification from an organizational member or internationally recognized certifying agency. Controlled Ascent - Any one of several kinds of ascents including normal, swimming, and air sharing ascents where the diver(s) maintain control so a pause or stop can be made during the ascent. Cylinder - A pressure vessel for the storage of gases. Decompression Chamber - A pressure vessel for human occupancy. Also called a hyperbaric chamber or decompression chamber. Decompression Sickness - A condition with a variety of symptoms, which may result from gas, and bubbles in the tissues of divers after pressure reduction. Dive - A
descent into the water, an underwater diving activity utilizing compressed gas, an ascent, and return to the surface. Dive Computer- A microprocessor based device which computes a diver's theoretical decompression status, in real time, by using pressure (depth) and time as input to a decompression model, or set of decompression tables, programmed into the device. Dive Location - A surface or vessel from which a diving operation is conducted. Dive Site - Physical location of a diver during a dive. Dive Table - A profile or set of profiles of depth-time relationships for ascent rates and breathing mixtures to be followed after a specific depth-time exposure or exposures. Diver - An individual in the water who uses apparatus, including snorkel, which supplies breathing gas at ambient pressure. Diver-In-Training - An individual gaining experience and training in additional diving activities under the supervision of a dive team member experienced in those activities. Diver-Carried Reserve Breathing Gas - A diver-carried independent supply of air or mixed gas (as appropriate) sufficient under standard operating conditions to allow the diver to reach the surface, or another source of breathing gas, or to be reached by another diver. Diving Mode - A type of diving required specific equipment, procedures, and techniques, for example, snorkel, scuba, surface-supplied air, or mixed gas. Diving Control Board (DCB) - Group of individuals who act as the official representative of the membership organization in matters concerning the scientific diving program (Section 1.24). Diving Safety Officer (DSO) - Individual responsible for the safe conduct of the scientific diving program of the membership organization (Section 1.20). EAD - Equivalent Air Depth (see below). Emergency Ascent - An ascent made under emergency conditions where the diver exceeds the normal ascent rate. Enriched Air (EANx) - A name for a breathing mixture of air and oxygen when the percent of oxygen exceeds 21%. This term is considered synonymous with the term "nitrox" (Section 7.00). Equivalent Air Depth (EAD) - Depth at which air will have the same nitrogen partial pressure as the nitrox mixture being used. This number, expressed in units of feet seawater or saltwater, will always be less than the actual depth for any enriched air mixture. fN₂ - Fraction of nitrogen in a gas mixture, expressed as either a decimal or percentage, by volume. fO₂ - Fraction of oxygen in a gas mixture, expressed as either a decimal or percentage, by volume. FFW – Feet or freshwater, or equivalent static head. FSW - Feet of seawater, or equivalent static head. Hookah - While similar to Surface Supplied in that the breathing gas is supplied from the surface by means of a pressurized hose, the supply hose does not require a strength member, pneumofathometer hose, or communication line. Hookah equipment may be as simple as a long hose attached to a standard scuba cylinder supplying a standard scuba second stage. The diver is responsible for the monitoring his/her own depth, time, and diving profile. Hyperbaric Chamber - See decompression chamber. Hyperbaric Conditions - Pressure conditions in excess of normal atmospheric pressure at the dive location. Lead Diver - Certified scientific diver with experience and training to conduct the diving operation. Maximum Working Pressure - Maximum pressure to which a pressure vessel may be exposed under standard operating conditions. Organizational Member - An organization which is a current member of the AAUS, and which has a program, which adheres to the standards of the AAUS as, set forth in the AAUS Standards for Scientific Diving Certification and Operation of Scientific Diving Programs. Mixed Gas - MG Mixed-Gas Diving - A diving mode in which the diver is supplied in the water with a breathing gas other than air. MOD - Maximum Operating Depth, usually determined as the depth at which the pO_2 for a given gas mixture reaches a predetermined maximum. MSW - Meters of seawater or equivalent static head. Nitrox - Any gas mixture comprised predominately of nitrogen and oxygen, most frequently containing between 21% and 40% oxygen. Also be referred to as Enriched Air Nitrox, abbreviated EAN. NOAA Diving Manual: Refers to the *NOAA Diving Manual, Diving for Science and Technology*, 2001 edition. National Oceanic and Atmospheric Administration, Office of Undersea Research, US Department of Commerce. No-Decompression limits - Depth-time limits of the "no-decompression limits and repetitive dive group designations table for no-decompression air dives" of the U.S. Navy Diving Manual or equivalent limits. Normal Ascent - An ascent made with an adequate air supply at a rate of 60 feet per minute or less. Oxygen Clean - All combustible contaminants have been removed. Oxygen Compatible - A gas delivery system that has components (o-rings, valve seats, diaphragms, etc.) that are compatible with oxygen at a stated pressure and temperature. Oxygen Service - A gas delivery system that is both oxygen clean and oxygen compatible. Oxygen Toxicity Unit - OTU Oxygen Toxicity - Any adverse reaction of the central nervous system ("acute" or "CNS" oxygen toxicity) or lungs ("chronic", "whole-body", or "pulmonary" oxygen toxicity) brought on by exposure to an increased (above atmospheric levels) partial pressure of oxygen. Pressure-Related Injury - An injury resulting from pressure disequilibrium within the body as the result of hyperbaric exposure. Examples include: decompression sickness, pneumothorax, mediastinal emphysema, air embolism, subcutaneous emphysema, or ruptured eardrum. Pressure Vessel - See cylinder. pN₂ - Inspired partial pressure of nitrogen, usually expressed in units of atmospheres absolute. pO₂ - Inspired partial pressure of oxygen, usually expressed in units of atmospheres absolute. Psi - Unit of pressure, "pounds per square inch. Psig - Unit of pressure, "pounds per square inch gauge. Recompression Chamber - see decompression chamber. Scientific Diving - Scientific diving is defined (29CFR1910.402) as diving performed solely as a necessary part of a scientific, research, or educational activity by employees whose sole purpose for diving is to perform scientific research tasks. Scuba Diving - A diving mode independent of surface supply in which the diver uses open circuit self-contained underwater breathing apparatus. Standby Diver - A diver at the dive location capable of rendering assistance to a diver in the water. Surface Supplied Diving - Surface Supplied: Dives where the breathing gas is supplied from the surface by means of a pressurized umbilical hose. The umbilical generally consists of a gas supply hose, strength member, pneumofathometer hose, and communication line. The umbilical supplies a helmet or full-face mask. The diver may rely on the tender at the surface to keep up with the divers' depth, time and diving profile. Swimming Ascent - An ascent, which can be done under normal or emergency conditions accomplished by simply swimming to the surface. Umbilical - Composite hose bundle between a dive location and a diver or bell, or between a diver and a bell, which supplies a diver or bell with breathing gas, communications, power, or heat, as appropriate to the diving mode or conditions, and includes a safety line between the diver and the dive location. Working Pressure - Normal pressure at which the system is designed to operate. # APPENDIX 6 AAUS REQUEST FOR DIVING RECIPROCITY FORM VERIFICATION OF DIVER TRAINING AND EXPERIENCE | Diver: | Date: | | |--|---|----------------------------| | and has completed all requirements nece | e listed person has met the training and pre-requiessary to be certified as a (Scientific Diver / Diver in Tety Manual, and has demonstrated competency | n Training) as established | | | d meets or exceeds all AAUS training requiremen | | | | | | | The following is a brief summary of thi | s diver's personnel file regarding dive status at | University of Florida | | (Date) | | | | Original diving authorization | | | | Written scientific diving examinat | ion | | | Last diving medical examination | Medical examination expiration date | | | Most recent checkout dive | | | | Scuba regulator/equipment service | :/test | | | CPR training (Agency) | | | | Oxygen administration (Agency) _ | 02 Exp | | | First aid for diving | F.A. Exp | | | First aid for diving Date of last dive Depth | 1 | | | Number of dives completed within previous Total number of career dives? | 12 months? Depth Certification | fsw | | Any restrictions? (Y/N) if yes, explain Please indicate any pertinent specialty certifies | | | | Emergency Information: Name: Telephone: Address: | Relationship: (work) (home) | | | | currently a certified scientific diver at University of Flo | orida | | Diving Safety Officer: | | | | (Signature) | (Date) | | | (Print) | <u> </u> | | # APPENDIX 7 DIVING EMERGENCY MANAGEMENT PROCEDURES #### Introduction A diving accident victim could be any person who has been breathing air underwater regardless of depth. It is essential that emergency procedures are pre-planned and that medical treatment is initiated as soon as possible. It is the responsibility of each Lead Diver to develop procedures for diving emergencies including evacuation and medical treatment for each dive location. #### **General Procedures** Depending on and according to the nature of the diving accident: - 1. Make appropriate contact with victim or rescue as required. - 2. Establish (A)irway, (B)reathing, (C)irculation as required. - 3. Stabilize the victim - 3. Administer 100% oxygen, if appropriate (in cases of Decompression Illness, or Near Drowning). - 4. Call local Emergency Medical System (EMS) for
transport to nearest medical treatment facility. Explain the circumstances of the dive incident to the evacuation teams, medics and physicians. Do not assume that they understand why 100% oxygen may be required for the diving accident victim or that recompression treatment may be necessary. - 5. Call appropriate Diving Accident Coordinator for contact with diving physician and decompression chamber. etc. - 6. Notify DSO or designee according to the Emergency Action Plan of the organizational member. - 7. Complete and submit Incident Report Form (www.aaus.org) to the DCB of the organization and the AAUS (Section 2.70 Required Incident Reporting). | List of Emergency Contact Numbers Appropriate For Dive Location | | |---|---| _ | | | | | | | #### **Available Procedures** - Emergency care - Recompression - Evacuation # **Emergency Plan Content** - Name, telephone number, and relationship of person to be contacted for each diver in the event of an emergency. - Nearest operational decompression chamber. - Nearest accessible hospital. - Available means of transport. # APPENDIX 8 DIVE COMPUTER GUIDELINES - 1. Only those makes and models of dive computers specifically approved by the Diving Control Board may be used. - 2. Any diver desiring the approval to use a dive computer as a means of determining decompression status must apply to the Diving Control Board, complete an appropriate practical training session and pass a written examination. - 3. Each diver relying on a dive computer to plan dives and indicate or determine decompression status must have his/her own unit. - 4. On any given dive, both divers in the buddy pair must follow the most conservative dive computer. - 5. If the dive computer fails at any time during the dive, the dive must be terminated and appropriate surfacing procedures should be initiated immediately. - 6. A diver should not dive for 18 hours before activating a dive computer to use it to control their diving. - 7. Once the dive computer is in use, it must not be switched off until it indicates complete out gassing has occurred or 18 hours have elapsed, whichever comes-first. - 8. When using a dive computer, non emergency ascents are to be at a rate specified for the make and model of dive computer being used. - 10. Whenever practical, divers using a dive computer should make a stop between 10 and 30 feet for 5 minutes, especially for dives below 60 fsw. - 11. Multiple deep dives require special consideration. # APPENDIX 9 AAUS STATISTICS COLLECTION CRITERIA AND DEFINITIONS #### **COLLECTION CRITERIA:** The "Dive Time in Minutes", The Number of Dives Logged", and the "Number of Divers Logging Dives" will be collected for the following categories. - Dive Classification - Breathing Gas - Diving Mode - Decompression Planning and Calculation Method - Depth Ranges - Specialized Environments - Incident Types Dive Time in Minutes is defined as the surface to surface time including any safety or required decompression stops. A Dive is defined as a descent into water, an underwater diving activity utilizing compressed gas, an ascent/return to the surface, and a surface interval of greater than 10 minutes. Dives will not be differentiated as openwater or confined water dives. But openwater and confined water dives will be logged and submitted for AAUS statistics classified as either scientific or training/proficiency. A "Diver Logging a Dive" is defined as a person who is diving under the auspices of your scientific diving organization. Dives logged by divers from another AAUS Organization will be reported with the divers home organization. Only a diver who has actually logged a dive during the reporting period is counted under this category. Incident(s) occurring during the collection cycle. Only incidents occurring during, or resulting from, a dive where the diver is breathing a compressed gas will be submitted to AAUS. # **DEFINITIONS:** #### Dive Classification: - Scientific Dives: Dives that meet the scientific diving exemption as defined in 29 CFR 1910.402. Diving tasks traditionally associated with a specific scientific discipline are considered a scientific dive. Construction and trouble-shooting tasks traditionally associated with commercial diving are not considered a scientific dive. - Training and Proficiency Dives: Dives performed as part of a scientific diver training program, or dives performed in maintenance of a scientific diving certification/authorization. #### **Breathing Gas:** - Air: Dives where the bottom gas used for the dive is air. - Nitrox: Dives where the bottom gas used for the dive is a combination of nitrogen and oxygen other than air. - Mixed Gas: Dives where the bottom gas used for the dive is a combination of oxygen, nitrogen, and helium (or other "exotic" gas), or any other breathing gas combination not classified as air or nitrox. ## **Diving Mode:** - Open Circuit Scuba: Dives where the breathing gas is inhaled from a self contained underwater breathing apparatus and all of the exhaled gas leaves the breathing loop. - Surface Supplied: Dives where the breathing gas is supplied from the surface by means of a pressurized umbilical hose. The umbilical generally consists of a gas supply hose, strength member, pneumofathometer hose, and communication line. The umbilical supplies a helmet or full-face mask. The diver may rely on the tender at the surface to keep up with the divers' depth, time and diving profile. - Hookah: While similar to Surface Supplied in that the breathing gas is supplied from the surface by means of a pressurized hose, the supply hose does not require a strength member, pneumofathometer hose, or communication line. Hookah equipment may be as simple as a long hose attached to a standard scuba cylinder supplying a standard scuba second stage. The diver is responsible for the monitoring his/her own depth, time, and diving profile. - Rebreathers: Dives where the breathing gas is repeatedly recycled in the breathing loop. The breathing loop may be fully closed or semi-closed. Note: A rebreather dive ending in an open circuit bailout is still logged as a rebreather dive. # **Decompression Planning and Calculation Method:** - Dive Tables - Dive Computer - PC Based Decompression Software ## Depth Ranges: Depth ranges for sorting logged dives are 0-30, 31-60, 61-100, 101-130, 131-150, 151-190, and 191->. Depths are in feet seawater. A dive is logged to the maximum depth reached during the dive. Note: Only "The Number of Dives Logged" and "The Number of Divers Logging Dives" will be collected for this category. #### **Specialized Environments:** - Required Decompression: Any dive where the diver exceeds the no-decompression limit of the decompression planning method being employed. - Overhead Environments: Any dive where the diver does not have direct access to the surface due to a physical obstruction. - Blue Water Diving: Openwater diving where the bottom is generally greater than 200 feet deep and requiring the use of multiple-tethered diving techniques. - Ice and Polar Diving: Any dive conducted under ice or in polar conditions. Note: An Ice Dive would also be classified as an Overhead Environment dive. - Saturation Diving: Excursion dives conducted as part of a saturation mission are to be logged by "classification", "mode", "gas", etc. The "surface" for these excursions is defined as leaving and surfacing within the Habitat. Time spent within the Habitat or chamber shall not be logged by AAUS. - Aquarium: An aquarium is a shallow, confined body of water, which is operated by or under the control of an institution and is used for the purposes of specimen exhibit, education, husbandry, or research. (Not a swimming pool) ## **Incident Types**: - Hyperbaric: Decompression Sickness, AGE, or other barotrauma requiring recompression therapy. - Barotrauma: Barotrauma requiring medical attention from a physician or medical facility, but not requiring recompression therapy. - Injury: Any non-barotrauma injury occurring during a dive that requires medical attention from a physician or medical facility. - Illness: Any illness requiring medical attention that can be attributed to diving. - Near Drowning/ Hypoxia: An incident where a person asphyxiates to the minimum point of unconsciousness during a dive involving a compressed gas. But the person recovers. - Hyperoxic/Oxygen Toxicity: An incident that can be attributed to the diver being exposed to too high a partial pressure of oxygen. - Hypercapnea: An incident that can be attributed to the diver being exposed to an excess of carbon dioxide. - Fatality: Any death accruing during a dive or resulting from the diving exposure. - Other: An incident that does not fit one of the listed incident types ## Incident Classification Rating Scale: - Minor: Injuries that the OM considers being minor in nature. Examples of this classification of incident would include, but not be limited to: - Mask squeeze that produced discoloration of the eyes. - Lacerations requiring medical attention but not involving moderate or severe bleeding. - Other injuries that would not be expected to produce long term adverse effects on the diver's health or diving status. - Moderate: Injuries that the OM considers being moderate in nature. Examples of this classification would include, but not be limited to: - DCS symptoms that resolved with the administration of oxygen, hyperbaric treatment given as a precaution. - DCS symptoms resolved with the first hyperbaric treatment. - Broken bones. - Torn ligaments or cartilage. - Concussion. - Ear barotrauma requiring surgical repair. - Serious: Injuries that the OM considers being serious in nature. Examples of this classification would include, but not be limited to: - Arterial Gas Embolism. - DCS symptoms requiring multiple hyperbaric treatment. - Near drowning. - Oxygen Toxicity. - Hypercapnea. -
Spinal injuries. - Heart attack. - Fatality.